52. Mitteilung [1]

Zur Photochemie von α,β -ungesättigten cyclischen Ketonen: Spezifische Reaktionen der n,π^* - und π,π^* -Triplettzustände von O-Acetyl-testosteron und 10-Methyl- $\Delta^{1,9}$ -octalon-(2)

von D. Belluš^{1a}), D. R. Kearns^{1b}) und K. Schaffner

Organisch-chemisches Laboratorium der Eidg. Technischen Hochschule, Zürich

(19. III. 69)

Summary. The photochemistry of the conjugated cyclohexenones O-acetyl testosterone (1) and 10-methyl- $\Delta^{1,9}$ -octalone-(2) (24) has been investigated in detail. The choice of reaction paths of both ketones depends strongly on the solvent used. In t-butanol, a photostationary equilibrium $1 \gtrsim 3$ is reached which is depleted solely by the parallel rearrangement $1 \rightarrow 5$ (Chart 1; for earlier results on these reactions see [2a] [6] [7]). In *benzene*, double bond shift $1 \rightarrow 16$ (Chart 3) occurs instead, which is due to hydrogen abstraction from a ground-state ketone by the oxygen of an excited ketone as the primary photochemical process. In *toluene*, the major reaction is solvent incorporation $(1 \rightarrow 17, \text{Chart 4})$ through hydrogen addition to the β -carbon of the enone, accompanied by double bond shift and formation of saturated dihydroketone as the minor reactions. Contrary in part to an earlier report [19], the photochemical transformations of the bicyclic enone 24 exhibit a similar solvent dependence. The corresponding products 25-29 are summarized in Chart 5 and Table 1.

Sensitization and quenching experiments established the triplet nature of the above reactions of **1** and **24**. Based on STERN-VOLMER analyses of the quenching data (cf. Figures 2, 4–8, and Table 3), rearrangement, double bond reduction and tolucne addition are attributed to one triplet state of the enones which is assigned tentatively as ${}^{3}(\pi, \pi^{*})$ state, and the double bond shift is attributed to another triplet assigned as ${}^{3}(n, \pi^{*})$ state (cf. Figure 9).

The stereospecific rearrangement of the 1α -deuterated ketone 2 to the 4β -deuterio isomer 4 shows the reaction to proceed with retention at C-1 and inversion at C-10.

The 4-substituted testosterone derivatives 33-36 (Chart 8) were found to be much less reactive in general than 1. In particular, 4-methyl ketone 33 remains essentially unchanged on irradiation in *t*-butanol, benzene and toluene.

Die Photoreaktivität einfach α,β -ungesättigter Ketone ist durch eine ungewöhnlich grosse Zahl verschiedenster Reaktionstypen dokumentiert. Sie umfasst bei Cyclohexenon-Derivaten die Addition an ungesättigte Systeme, Reduktionsprozesse in Gegenwart von Partnermolekeln mit relativ leicht abstrahierbaren Wasserstoffatomen, die Addition von Lösungsmittelmolekeln und molekulare Umlagerungen²). Die Vielfalt der lichtinduzierten Umsetzungen ist einerseits der Einwirkung durch strukturbedingte Faktoren – die nicht nur im unmittelbaren Chromophorbereich lokalisiert sind – und durch das Lösungsmittel auf sekundäre Prozesse zuzuschreiben. Andererseits zeichnet sich das konjugierte Enon-Chromophor dadurch aus, dass in

a) Beurlaubt vom INSTITUT FÜR POLYMERE der Slowakischen Akademie der Wissenschaften, Bratislava, Tscheehoslowakei. - b) Department of Chemistry, University of California, Riverside, California.

²) Für neuere Übersichtsartikel vgl. [2].

höherem Ausmass als bei anderen weitverbreiteten Chromophoren verschiedene *reaktive* Anregungszustände z.T. gleichzeitig auftreten können, die sich hinsichtlich der Elektronen-Konfiguration, Spin-Multiplizität und Konformation und damit auch in ihren Reaktionen unterscheiden. Die Selektion der Reaktivzustände wird wiederum durch strukturelle Faktoren – Substituenteneinflüsse auf den Enon-Chromophor, konformativer Beweglichkeitsgrad im angeregten Zustand – als auch durch Lösungsmitteleffekte massgebend beeinflusst.

Die vorliegende Mitteilung befasst sich mit 1) der näheren Untersuchung von einigen bereits bekannten und von neuartigen Reaktionen des konjugierten Cyclohexenon-Systems, 2) dem Nachweis, dass diese Reaktionen aus mindestens zwei angeregten Triplettzuständen erfolgen, und 3) dem Versuch, in Kombination mit einer kürzlich veröffentlichten spektroskopischen Untersuchung [3] diese reaktiven Anregungszustände zu identifizieren³).

Resultate der photochemischen Untersuchungen

O-Acetyl-testosteron (1). – In t-Butanol. Vor einigen Jahren wurde die Umlagerung von 1 in die beiden Photoisomeren 3 und 5 (Formelschema 1) bei der Bestrahlung in verdünnter⁴) t-Butanollösung mit ungefiltertem [6] oder mit Pyrex gefiltertem [7] Licht von Quecksilber-Hochdruckbrennern beschrieben. Eine eingehendere Untersuchung ergab nun, dass das qualitativ gleiche Resultat (1,82 · 10⁻²M $1 \rightarrow 3 + 5$) auch bei der Einstrahlung von Licht > 3270 Å (vorwiegend Absorption der 3660-Å-Wellenlänge) erzielt werden kann. Das Cyclopropylketon 3 absorbiert in diesem Wellenlängenbereich nicht mehr. Ausserdem liess sich die Umlagerung von 1 $(\rightarrow 3 + 5)$ in t-Butanol unter Verwendung von Licht über 3400 Å mittels Triplett-

³) Ein Teil der Resultate wurde an der Winterversammlung der Schweiz. Chemischen Gesellschaft vom 15. Februar 1969 in Neuchâtel vorgetragen [4].

⁴⁾ Die Bildung von Cyclobutan-Dimeren [5] kann bei genügender Verdünnung auf unwesentliche Spuren reduziert werden.

Sensibilisierung durch Acetophenon erzielen und durch Triplett-Löschung mittels Naphtalin und 1,3-Pentadien unterbinden. Vollständige Reaktionslöschung stellte sich z.B. mit $3,13 \cdot 10^{-1}$ M Naphtalin und mit 1M Pentadien ein. In einer weiteren Versuchsreihe wurde O-Acetyl- 1α -deutero-testosteron (2) sowohl der direkten Lichtanregung als auch der Acetophenon-Sensibilisierung unterworfen. In beiden Fällen entstand dasselbe, sterisch einheitliche Deuterocyclopropylketon 4^5). Die für die Sensibilisierungsversuche eingesetzten Konzentrationen waren 2,12 · 10⁻²M 1 bzw. 2 und $8,34 \cdot 10^{-1}$ M Acetophenon⁶). Die Produktenverhältnisse **3**:**5** zeigten in den drei Versuchsanordnungen - direkte Lichtanregung, Triplett-Sensibilisierung und unvollständige Triplett-Löschung – keine wesentlichen Unterschiede⁷)⁸). Das Cyclopropylketon 3 isomerisierte sich schliesslich in t-Butanol bei der Bestrahlung mit Licht $> 2800~{
m \AA}$ zu einem Gemisch, das sowohl das Cyclopentenon 5 als auch in kleinerer Menge O-Acetyl-testosteron (1) enthielt. Ein Versuch, die Umwandlung $3 \rightarrow 1 + 5$ ebenfalls nit Acetophenon zu sensibilisieren, war erfolglos, und 3 konnte quantitativ regeneriert werden. Hingegen gelang es, eine vollständige Reaktionslöschung durch den Zusatz von 1M 1,3-Pentadien zu erzielen. Separate Bestrahlungsversuche mit 5 schliessen eine rückläufige Umlagerung dieser Verbindung zu 1 oder 3 aus (vgl. 8)).

- ⁶) Die Enon-Konzentrationen in den Sensibilisierungsversuchen wurden so gewählt, dass die pseudo-unimolekulare Kollisionsgeschwindigkeits-Konstante, welche sich aus der Diffusionsgeschwindigkeit im betr. Lösungsmittel (siehe [8]) und der Enon-Konzentration errechnet, für eine Triplettenergie-Übertragung ausreichte und zu klein war für eine Singlett-Sensibilisierung (Zerfallskonstanten der Acetophenon-Anregungszustände: Singlett > 10¹⁰ s⁻¹ [9], Triplett 10⁵ s⁻¹ [10]). Pseudo-unimolekulare Kollisionsgeschwindigkeits-Konstanten für Sensibilisierung von 1: ~ 4,7 · 10⁸ s⁻¹ in t-Butanol, ~ 2,2 · 10⁸ s⁻¹ in Benzol und ~ 2,4 · 10⁸ s⁻¹ in Toluol; **24**: ≤ 10,6 · 10⁸ s⁻¹ in Benzol (alle Versuche bei ca. 30°).
- 7) Der Anteil an 3 in den Bestrahlungsgemischen betrug nach Abzug des regenerierten Ausgangsmaterials (1) 35,3% (direkte Lichtanregung), 35,7% (Sensibilisierung) und 32% (in Gegenwart von Naphtalin).
- 8) Die quantitative Erfassung des Cyclopentenons 5 wurde dadurch erschwert, dass dieses Keton im gleichen Wellenlängenbereich wie 1 absorbiert und photochemisch zu einem Gemisch der an C-5 diastereomeren gesättigten Dihydroketone 7 weiterreagiert [11]. Ausserdem liefert 5 in *t*-Butanol mit Licht > 2800 Å (Pyrexfilter) auch den *t*-Butylester 8, der schon früher [6] bei der Bestrahlung von 1 und von 5 in Quarzgefässen isoliert worden ist. Interessanterweise entsteht der ungesättigte Ester 8 nicht, wenn 1 und 5 mit Wellenlängen > 3400 Å bestrahlt werden [11]. Die Umwandlung 5 → 8 scheint daher über ein Zwischenprodukt abzulaufen, dessen Absorptionsbereich unterhalb von 3400 Å liegt und für dessen Auftreten dünnschichtchromatographische Anhaltspunkte vorliegen. Die Reaktion 5→8 dürfte demnach nicht nach dem von DAUBEN für eine formal analoge Umsetzung von 3-Methyl-cyclohexen-2-on vorgeschlagenen Mechanismus erfolgen [12].

⁵) Die in der Formel **6** eingezeichnete Anordnung des Deuteriumatoms wurde in dem aus **2** entstandenen Cyclopentenon experimentell nicht bestimmt.

Die Herstellung von 2 erfolgte aus 9 durch selektive Deuterierung der Δ^1 -Doppelbindung mittels homogener Katalyse mit Tris-(triphenylphosphin)-rhodium(I)-chlorid⁹), Behandlung des angefallenen 1 α , 2α -Dideuteroproduktes 10 mit siedender methanolischer Natriumhydroxid-Lösung und Reacetylierung (Formelschema 2). Auf analoge Weise liess sich auch 4 aus dem unge-

sättigten Cyclopropylketon 11 via 12 herstellen. Die drei Präparate von 4 - die Produkte der direkten Lichtanregung und der Sensibilisierung von 2 sowie das aus 11 hergestellte -- wurden mittels Pyridiniumbromid-perbromid ($C_5H_5N \cdot HBr \cdot Br_2$) (vgl. [14]) in das Bromketon 13 übergeführt. Die sterische Einheitlichkeit der Präparate von 4 und 13 ist aus den NMR.-Spektren der Bromketon-Präparate (13) eindeutig ersichtlich (vgl. dazu Fig. 1). Mit Hilfe der «slow sweep»-Technik bei grosser Amplitude liess sich die Homogenität der drei Bromketon-Präparate auf mindestens 99% festlegen. Die Zuordnung der α -Konfiguration des Wasserstoffs an C-3 (13 und 14: 3-Br) und des Deuteriums an C-4 (4 und 13) lässt sich an Hand der folgenden Argumente stichhaltig begründen. Modellbetrachtungen des Bicyclo[3.1.0]hexenon-Gerüstes von 11 (vgl. die Projektion 15) und des entsprechenden gesättigten Systems von 3 bzw. 4 zeigen, dass die endo- (α) -Seite durch die Methylgruppe 19 sterisch noch zusätzlich stark abgeschirmt ist. Der katalytische Angriff an der Doppelbindung von 11 bei der Deuterierung¹⁰) ebenso wie die Bromierung von 3 und 4 sind daher ausschliesslich von der $exo-(\beta-)$ -Seite her zu erwarten. Die 3β -Konfiguration des Broms in 14 ist auch mit dem COTTON-Effekt von $\Lambda \varepsilon_{\max}^{3130} = +2,71$ im Circulardichrogramm dieses Ketons kongruent¹¹). So kann erwartet werden, dass Bromatom (in pseudoaxialer Anordnung) [16] und Dreiring in α -Stellung eines Führfringketons [17] [18] das Vorzeichen des Cotton-Effektes im entgegengesetzten Sinn bestimmen, falls sie im gleichen Oktanten liegen. Der Effekt der Verbindung 3 beträgt $A\epsilon_{\max}^{2920 \& 3010} = +5,09$ [18]. Die Reduktion um einen Betrag von -2,38 beim Übergang $3 \rightarrow 14$ dürfte demnach bedeuten, dass in 14 Bromatom und Dreiring trans angeordnet sind. Damit in Übereinstimmung erfährt das NMR.-Signal der Methylgruppe 19 durch die Einführung des Broms eine nur unbedeutende chemische Verschiebung ($\Delta \delta^{3-14} = 0,04$).

- ⁹) Für Methodik und sterischen Verlauf dieser Deuterierung vgl. [13].
- ¹⁰) Für die Diskussion einer analogen Situation bei der Hydrierung des 3-Methylhomologen von 11 siehe [15].
- ¹¹) Messung und Diskussion dieses Circulardichroismus verdanken wir Herrn PD Dr. G. SNATZKE, Universität Bonn.

Fig. 1. NMR.-Spektren der a-Bromketone 13 und 14; 100 MHz, CDCl₃-Lösung

Formelschema 3. Die Photoisomerisierung von 1 in Benzol

In Benzol. Beim Lösungsmittelwechsel von t-Butanol auf Benzol stellte sich eine drastische Änderung der Reaktion von 1 bei der Bestrahlung mit Licht > 3400 Å ein. Anstelle der Umlagerungen zu 3 und 5 (Formelschema 1) trat in $1,82 \cdot 10^{-2}$ M Benzollösung von 1 als praktisch alleiniger Prozess eine Doppelbindungsverschiebung unter Ausbildung von 16 ein (Formelschema 3). Positiv verlaufene Sensibilisierungs-

Fig. 2. STERN-VOLMER-Diagramme der Tiplettlöschung mit Naphtalin und 2,5-Dimethylhexa-2,4-dien:

-○- -○- und -●- -●- $1 \rightarrow 16$ in Benzol ($2 \cdot 10^{-2}$ M 1 + Naphtalin und $1 \cdot 10^{-2}$ M 1 + Dimethylhexadien, Werte von je zwei Versuchsreihen)

 $-\triangle - -\triangle - 1 \rightarrow 16$, 17 und Dihydro-1 *in Toluol* (je 1,4 · 10⁻²M 1 + Naphtalin bzw. Dimethylhexadien) Versuchstemp. 30 °C. Quantenausbeute der Abnahme von [1] ohne Triplettlöscher (Φ_0)/Quantenausbeute in Gegenwart von Triplettlöscher (Φ_0) als Funktion der Konzentration an Triplettlöscher ($[\Omega]$). (1,82 $\cdot 10^{-2}$ M 1 und 0,833 M Acetophenon⁶)) und Triplett-Löschversuche charakterisieren auch hier ein angeregtes Triplett von 1 als Reaktivzustand. Die Reaktion wurde durch 3,13 $\cdot 10^{-1}$ M Naphtalin praktisch vollständig unterbunden. Ein STERN-VOLMER-Diagramm (Figur 2) zeigt, dass die Reaktionshemmung linear mit den Konzentrationen an Naphtalin und 2,5-Dimethylhexa-2,4-dien zunimmt. Der Anstieg der Geraden beträgt 560 l \cdot Mol⁻¹ für die Löschung mit Naphtalin und 290 l \cdot Mol⁻¹ für die Löschung mit Naphtalin und 290 l \cdot Mol⁻¹ für die Löschung mit Dimethylhexadien. Die Bestrahlung eines äquimolaren Gemisches (je 1,06 $\cdot 10^{-2}$ M in Benzol) von 1 und deuteriertem Testosteron [17-Alkohol; 44% d₅ (D-Haftstellen: C-2, C-4 und C-5), 45% d₄, 6% d₃] lieferte Δ^5 -Produkte der Isotopenzusammensetzung 9% d₁ und 90% d₀ (17-Acetat, vgl. 16) sowie 4% d₅, 26% d₄ und 39% d₃ (17-Alkohol). In Hexadeuterobenzol (3,02 $\cdot 10^{-2}$ M 1) resultierte ein Δ^5 -Keton (vgl. 16) der Isotopenzusammensetzung 4% d₂, 15% d₁ und 81% d₀. Ferner entstand in Benzol (1,06 $\cdot 10^{-2}$ M 1) unter Zugabe von 2,2 Mol-Äqu. *t*-BuOD ein Produkt (vgl. 16) von 60% d₁ und 40% d₀⁻¹²).

In Toluol. Die Bestrahlung von 1 in Toluol führte noch immer zur Doppelbindungsverschiebung (\rightarrow 16), doch wurde sie durch neue Prozesse erheblich konkurrenziert: durch die Photoreduktion zum Dihydroketon und insbesonders durch die hier überwiegende Ausbildung des Toluoladduktes 17 (Formelschema 4). Ein analoges Resultat ergab sich auch bei der Sensibilisierung mit Acetophenon (1,82 \cdot 10⁻²M 1 und 0,833 M Acetophenon). Mit 0,313 M Naphtalin wurden alle drei Prozesse (\rightarrow 16 + 17 + Dihydro-1) praktisch vollständig unterbunden. Aus Figur 2 ist die lineare Beziehung zwischen der Umsatzhemmung von 1 in Toluol und den angewandten Konzentrationen an Naphtalin (Steigung 4401 \cdot Mol⁻¹)¹³) und 2,5-Dimethyl-2,4hexadien (Steigung 2341 \cdot Mol⁻¹)¹³) ersichtlich.

Die in relativ kleiner Menge angefallene Dihydroketon-Fraktion wurde nicht in reiner Form isoliert, sondern nur durch dünnschichtchromatographische Vergleiche charakterisiert. Es ist möglich, dass ein Gemisch der an C-5 stereoisomeren 3-Oxo-17 β -acetoxy-androstane vorlag. Die C(4)-Haftstelle des Benzylrestes in 17 wurde bewiesen, indem in alkalischem Milieu deuteriert wurde, wobei vorwiegend drei Wasserstoffatome in 17 ersetzt wurden (0% d₄, 93,3% d₃, 6,7% d₂). Zudem weist das undeutlich strukturierte Multiplett der benzylischen Methylenprotonen bei ca. 2,5-3,15 δ im NMR.-Spektrum von 17 auf eine Spinkopplung mit einem vicinalen Proton (an C-4)

¹²) Die Prozentworte der Isotopenzusammensetzungen verstehen sich unter Abzug des natürlichen Deuteriumgehaltes.

¹³) Die Werte der Steigung der STERN-VOLMER-Geraden wurden hier zu Vergleichszwecken auf die Viskosität einer Benzollösung umgerechnet.

hin. Diese Resultate eliminieren insbesonders C-5 als Haftstelle für den Benzylsubstituenten¹⁴). Die Benzylketon-Fraktion bestand, wie aus den beiden $CH_3(18)$ -Methyl-NMR.-Signalen bei 1,00 und 1,06 δ im ungefähren Verhältnis 1:1 ersichtlich ist, aus einem Stereoisomerengemisch, dessen Zusammensetzung sich auch bei der alkalischen Behandlung nicht veränderte. Es darf daraus geschlossen werden, dass der Benzylrest im Photoprodukt äquatorial gebunden ist und dass damit für 17 noch zwei stereoisomere Strukturen – mit $4\alpha, 5\beta$ - und mit $4\beta, 5\alpha$ -ständigen Wasserstoffatomen – in Betracht kommen.

10-Methyl-Δ^{1,9}-octalon-(2)(24).--Um die in der Testosteronreihe aus analytischen Gründen erschwerte quantitative Erfassung der Triplettenergie-Transferprozesse zu umgehen, wurden auch die photochemischen Umsetzungen des Enons 24, einem bicyclischen Analogon von 1, in unsere Untersuchungen einbezogen. Die nachfolgenden Ausführungen beschränken sich auf die Besprechung der Ausbildung der Photoprodukte 25-29 (Formelschema 5), die genau den Strukturtypen der aus 1 erhaltenen

¹⁴) Die Addition des Benzylrestes an die α-Stellung und diejenige eines Wasserstoffs an die β-Stellung des Enons 1 bei der Bestrahlung in Toluol findet auch eine Parallele in den Photoumsetzungen der beiden konjugierten Ketone 18 und 21 im gleichen Lösungsmittel. In beiden Fällen entstehen Toluoladdukte (19 bzw. 22) und Dihydrodimere (20 bzw. 23) sowie Dibenzyl [11]. Die α-Haftstelle der Benzylreste in 19 und 22 sowie die α-Verknüpfungsstellen der Molekelhälften in 20 und 23 wurden durch Deuterierungsexperimente und NMR.-Spektroskopie sowie im Fall von 22 durch Synthese bewiesen.

978

Bun		
odukteverteil		
$: P_{T}$		
smitteln		
Lösung		
diversen		
4 in		a
und 2		Ing V
I no		trahh
Å) z		Bes
3400		r der
über		eiluns
ngen		evert
ellenlä		dukte
· (Ше		Pro
ธินทธิอ.		
-Anr		
ъ Т		
te n -		
Direk		
le 1.		
[abel]		tel
<u> </u>	1	ìt

Lösungsmittel			Ъ.	odukt	everteilung der	Bestra	ahlung	von			Ē.			
	Ο-AcctyI-test 1: S₀ → S _{n,πⁱ} λ _{max}	tosteroi ε ε	$(1)^{a}$	5.	$3-Oxo-17\beta$ - acetoxy- androstan ^c)	17	18	10-Methyl- Δ^{1} , 24 : S ₀ \Rightarrow S _{<i>n</i>,<i>j</i>} λ_{max}	^s -octal ε ^ε	0n-(2) (2 25	26 26	27	28	29
t-Butanol	314 nm	77	×	×				307–309 nm	62	80%	ca. 5%	3%	1	11%
Isopropanol	315–317 nm	62			×			312-313 nm	49	31%	ca. 2%	35%	ł	6%
Toluol	334–335 nm	44			×	×	×	331 nm	33	3%	(p	19%	40%	2%
Pyridin ^e)			×	×						41%	(þ	10%	ł	25%
Benzonitril			×	×			×			37%	(p	5%	ł	18%
Benzol	334 nm	55					×	333–334 nm	35	14%	d)	6%	ł	45%
α, α, α-Trifluortoluol	330 nm	47					×	321 nm	35	24%	d)	7%	I	28%
 ^a) Qualitativer Nach ^b) Quantitative Analy setztem Ausgangsn 	veis (positives F /se mittels Gas- naterial (24).	Resulta -Chrom	t = × atograj) mitte phie (s	els Dünnschicht iehe dazu den e	t-Chroi exper.	natogra Teil, A	aphie. bschnitt 3.1). I	Prozen	twerte b	erechnet	als Ant	ceile an 1	-aguur
 c) Identifikation nur werden konnte. 	durch Vergleic	l mi d	Dünnsc	hicht-(Chromatogramr	n, wot	oci spez	iell nicht zwisc	chen 5	x- und 5	β -Stereoi	somerei	a differe	nziert

d) In der Mehrzahl der Versuche war der Anteil an Cyclopentenon 26 zu klein für eine quantitative gas-chromatographische Bestimmung der entsprechenden, nahe bei 24 laufenden Fraktionen.

e) Es entstanden durchwegs dunkelbraun gefärbte Lösungen.

Verbindungen entsprechen¹⁵). Für eine möglichst breite Vergleichsbasis zwischen der Steroid- und der bicyclischen Reihe wurde die Produkteverteilung in sieben verschiedenen Lösungsmitteln eruiert. Die in der Tabelle 1 zusammengestellten Resultate lassen die Tendenz der beiden Versuchsreihen zu einer ähnlichen Produktselektivität erkennen und kennzeichnen damit in qualitativer Hinsicht hinreichend die Parallelität des photochemischen Verhaltens von 1 und 24¹⁶). Hingegen ist zu vermerken, dass sämtliche Umsetzungen in der Octalon-Reihe um ein Mehrfaches langsamer ablaufen als in der Steroid-Reihe. In den Bestrahlungsversuchen in Toluol konnte zusätzlich zu den Produkten 25–29 auch Dibenzyl nachgewiesen werden.

Die Umlagerung $24 \rightarrow 25 + 26$ ist wie im Analogiefall der Steroidreihe von der Weiterisomerisierung des Cyclopropylketons 25 zu 26 gefolgt, sobald in einem auch von dieser Verbindung absorbierten Wellenlängenbereich (d. h. < 3400 Å) eingestrahlt wird. Dies konnte wiederum in einem separaten Versuch mit 25 in t-Butanol (Formelschema 6) gezeigt werden, wobei auch hier nebst 24 und 26 zusätzlich das Photoreduktionsprodukt 30 anfiel.

¹⁵) Auf die in den meisten Lösungsmittelsystemen zu beobachtende Cyclobutandimeren-Bildung⁴) wird hier nicht eingegangen. Es ist ferner damit zu rechnen, dass vor allem in Isopropanol Pinakole aus **24** gebildet werden [19], die ebenfalls nicht isoliert wurden.

Nach Abschluss unserer Arbeiten mit 24 beschrieb DAUBEN [20] eine weitere UV.-Bestrahlung dieses Enons in *t*-Butanol, bei welcher nebst 25 auch 27 isoliert wurde.

¹⁶) ZIMMERMANN et al. [19] beschrieben als erste photochemische Untersuchungen des Enons 24 in t-Butanol, Methanol und Benzol. Nach Ansicht dieser Autoren wurde das Cyclopropylketon 25 «quantitativ» sowohl bei der direkten Lichtanregung in den alkoholischen Lösungsmitteln als auch bei der Triplettenergie-Übertragung von Acetophenon in t-Butanol gebildet. Lediglich in den Versuchen in Benzol wurde das Auftreten «einiger nicht flüchtiger Nebenprodukte» vermerkt. Eigene Testversuche ergaben aber, dass sich die Photoprodukte 25, 27 und 29 unter den in [19] angewandten Bedingungen der Gas-Chromatographie (stationäre Phase: 15% Apiezon L; Kolonnentemperatur 170°) nicht auftrennen lassen, sondern dass sie in einem breiten Pik zusammenlaufen (relative Retentionszeiten: 24 = 1,0, 25+27+29 = ca. 0,77). Es ist daher anzunehmen, dass auch die veröffentlichten Werte der Quantenausbeuten [19] nicht die Umlagerung $24 \rightarrow 25$ allein umfassen.

Die IR.- $(r_{max} = 1715, 3020 \text{ cm}^{-1}, \text{ in Substanz})$ und NMR.-Daten $(\delta = 1, 20/s \text{ 2-CH}_3, \text{ in CDCl}_3)$ des *Photoproduktes* **25** stehen im Einklang mit der Cyclopropylketon-Teilstruktur. Zur Sicherstellung der Struktur **25**¹⁷) wurde die Verbindung auf einem zweiten, unabhängigen Weg hergestellt. Es war naheliegend, dafür die photochemische Cyclohexadienon \rightarrow Bicyclo[3.1.0]hex-3-en-2-on-Umlagerung als Schlüsselreaktion zu verwenden. Wie auf Grund vielfach belegter analoger Umwandlungen [15] [22] [23] zu erwarten war, isomerisierte sich das Dienon **31** bei der Bestrahlung mit 2537 Å in Dioxanlösung präktisch ausschliesslich zu **32** (Formelschema 7). Die katalytische Hydrierung von **32** ergab ein mit **25** identisches Dihydroprodukt.

Das Photoprodukt 26 ist durch ein UV.-Absorptionsmaximum bei 232 nm ($\varepsilon = 13440$), IR.-Banden u. a. bei 1604, 1680 und 1712 cm⁻¹ sowie NMR.-Signale bei 0,84 (Singlett der Methylgruppe), 2,04 (Singlett mit geringer Feinstrukturierung der Cyclopentenon-Methylenprotonen) und ca. 5,88 δ (leicht aufgesplittertes Signal des olefinischen Protons) charakterisiert. Diese Daten decken sich in allen signifikanten Details mit den entsprechenden Werten der Verbindung 18 [siehe exper. Teil und Fussnote ⁴⁶], die nach einer bekannten Vorschrift [24] hergestellt worden war. Unter Berücksichtigung dieser Daten-Übereinstimmung kann es sich beim restlichen Molekelteil (C_4H_8 ; im NMR. durch einen breiten Signalhaufen bei ca. 1,0–1,7 δ gekennzeichnet) nur um die vier Methylengruppen eines gesättigten Fünfrings handeln.

Die trans-Ringverknüpfung des gesättigten Ketons 27 wurde auf Grund der chemischen Verschiebung des NMR.-Methylsignals festgelegt. Nach SONDHEIMER [25] entsteht bei der katalytischen Hydrierung von 24 ein Dihydroketon-Gemisch, in welchem das cis-Isomere überwiegt. Der Vergleich des NMR.-Spektrums eines solchen Hydrierungsgemisches mit demjenigen des Photoproduktes ergab, dass sich das Methylsignal des Photoproduktes mit jenem des in kleinerer Ausbeute gebildeten Reduktionsproduktes, d. h. des trans-Isomeren 27 (1,18 δ), deckte. Im Spektrum des Photoproduktes fehlte das erwartungsgemäss bei grösserer Feldstärke auftretende Methylsignal der cis-Verbindung (0,97 δ) völlig.

Die Haftstelle des Benzylsubstituenten im Toluoladdukt 28¹⁴) folgt aus dem Resultat der basisch katalysierten Deuterierung, die zu einer Isotopenzusammensetzung von 2,5% d₄, 41,5% d₃, 37% d₂, 14,5% d₁ und 3,5% d₀ führte, und aus den NMR.-Spektren vor und nach dieser Deuterierung. Im Spektrum des Photoproduktes 28 waren die benzylischen Methylenprotonen und die zur Ketogruppe α -ständigen Protonen durch komplex und undeutlich strukturierte Signalhaufen bei ca. 2,1-2,6 und 2,9-3,2 δ gekennzeichnet. Nach der Deuterierung hingegen zeigte sich für die Benzylmethylenprotonen ein gut aufgelöstes *A* B-Spektrum bei 2,25 und 3,05 δ mit einer Kopplungskonstanten von 14 Hz. In beiden Spektren waren die Methylprotonen unverändert durch je zwei Singlettsignale bei 1,09 und 1,27 δ im ungefähren Verhältnis 1:3 vertreten. Die naheliegende Erklärung dafür ist, dass im Photoprodukt 28 ein Gemisch von zwei Isomeren mit *cis*- bzw. *trans*-Ringverknüpfung und je äquatorial angeordneter Benzylgruppe im Mengenverhältnis 1:3 vorliegt.

Die Struktur des β , γ -ungesättigten Ketons **29** [IR.: $\nu_{max} = u.a. 1722 \text{ cm}^{-1}$; NMR.: $\delta = u.a. ca. 5,1/b$, olefinisches Proton] ist durch seine glatte Isomerisierung zum konjugierten Enon **24** bei der Alkalibehandlung bewiesen.

¹⁷) Sowohl FAWZI & GUTSCHE [21] als auch ZIMMERMANN et al. [19] beschrieben mit der katalytischen Zersetzung von 1-Diazo-5-(2'-methyl-cyclohexen-1-yl)-butanon-(2) einen eleganten Zugang zum Cyclopropylketon 25. Die von diesen Autoren publizierten physikalischen Daten des Produktes sind jedoch nicht ausreichend für einen hinlänglichen Vergleich. Zudem differieren die Angaben teilweise von den in unserem Laboratorium gemessenen Werten [siehe exper. Teil und Fussnote ⁴⁴].

Die Konstitutionszuordnung für das *Photoreduktionsprodukt* **30** beruht lediglich auf den IR.-($\nu_{CO} = 1745 \text{ cm}^{-1}$) und MS.-Daten [m/e 166 (M^+), 83 (Hauptfragmente resultierend aus der Spaltung der C-C-Bindung zwischen den beiden Ringen)], sowie auf der Analogie von **26** \rightarrow **30** zur Reduktion **5** \rightarrow **7**⁸) unter den gleichen Bestrahlungsbedingungen. Da nur kleine Substanzmengen von **30** verfügbar waren, wurde auf eine eingehendere Analyse verzichtet.

Es ist anzunehmen, dass den Umlagerungen $24 \rightarrow 25$ und $24 \rightarrow 26$ ein oder mehrere unimolekulare photochemische Primärprozesse zugrunde liegen und dass die Reduktion zu 27 ebenso wie die Toluol-Anlagerung zu 28 durch bimolekulare Prozesse ausgelöst werden. Für die Doppelbindungsverschiebung $24 \rightarrow 29$ ist eine solche Festlegung *a priori* nicht möglich. Die Resultate der Mischversuche mit O-Acetyl-testosteron (1) + deuteriertem Testosteron in Benzol bewiesen bereits, dass an der analogen Isomerisierung $1 \rightarrow 16$ bimolekulare Wasserstoff-Austauschreaktionen beteiligt sind. Im vorliegenden Fall wurde für einen zusätzlichen Nachweis eines bimolekularen Reaktionsmechanismus die Abhängigkeit der Umsatzgeschwindigkeit $24 \rightarrow 29$ von der Konzentration an 24 überprüft und dabei die in der Figur 3 reproduzierte Beziehung ermittelt.

Fig. 3. Abhängigkeit der reziproken Umsatzgeschwindigkeit 24→29 von der reziproken Konzentration an Ausgangsketon 24

Der Annahme, dass die Doppelbindungswanderung **24**→**29** aus einer bimolekularen Reaktion eines angeregten Enon-Tripletts (³E) mit einem zweiten Enon im Grundzustand (E) resultiert, genügt das Reaktionsschema

$$E + h \nu \longrightarrow E T_{abs(E)} [Einstein \cdot s^{-1} \cdot [^{-1}] \qquad (7)$$

$$\stackrel{1E}{\xrightarrow{}} E + h \nu' = k_1 \qquad (3)$$

$$\stackrel{1E}{\xrightarrow{}} E = k_2 \qquad (4)$$

$$\stackrel{3E}{\xrightarrow{}} E = k_1 \nu'' = k_3 \qquad (6)$$

$$\stackrel{3E+E-\longrightarrow}{\xrightarrow{}} E + 29 \qquad k_4 \qquad (7)$$

Unter der «steady state»-Voraussetzung d[¹E]/dt = 0 und d[³E]/dt = 0 liefert die kinetische Aus wertung dieses Schemas den Ausdruck

$$\frac{-\mathrm{d}[\mathrm{E}]}{\mathrm{d}t} = I_{\mathrm{abs}(\mathrm{E})} \frac{k_2 k_4 [\mathrm{E}]}{(k_1 + k_2) (k_3 + k_4 [\mathrm{E}])}$$

der für einen kleinen Umsatz in die Annäherung

$$\frac{[\mathbf{E}]_0 - [\mathbf{E}]_t}{\Delta t} = I_{\mathrm{abs}(\mathbf{E})} \frac{k_{\mathrm{q}} k_{\mathrm{4}} [\mathbf{E}]_0}{(k_1 + k_2) (k_3 + k_{\mathrm{4}} [\mathbf{E}]_0)},$$

mit $[E]_0$ und $[E]_t = Konzentrationen der Lösung vor bzw. nach dem Bestrahlungsversuch, und diese schliesslich in$

$$\frac{1}{\Phi} = \frac{\Delta t \cdot I_{abs(E)}}{[E]_0 - [E]_t} = \frac{(k_1 + k_2) (k_3 + k_4 [E]_0)}{k_2 k_4 [E]_0},$$
(8)

mit Φ = Quantenausbeute der Abnahme der Ketonkonzentration [E], umgewandelt werden kann. Infolge des kleinen Extinktionskoeffizienten von **24** bei 3660 Å (ε_E = 12,8 in Benzol) war es zur Minimalisierung der Fehlerquellen wünschenswert, durch den Zusatz von *ortho*-Hydroxyacetophenon (= X, ε_X^{3660} = 292 in Benzol) als photostabiles internes Filter¹⁸) die vollständige Absorption des eingestrahlten Lichts während der Versuchsdauer zu gewährleisten. Unter dieser Voraussetzung vereinfacht sich die Grösse $I_{abs(E)}$ für einen kleinen Umsatz von E in einem Zweikomponentensystem zu

$$I_{abs(E)} = \frac{I_0}{\Delta t} \cdot \frac{\varepsilon_E[E]_0}{\varepsilon_X[X] + \varepsilon_E[E]_0} = \frac{I_0}{\Delta t} \cdot \frac{D_E}{D_X + D_E} \quad (vgl. \, dazu \, [27]).$$

Dieser Ausdruck in Gleichung (8) eingesetzt ergibt

$$\frac{1}{I_0 \cdot \Phi} = \frac{1}{[E]_0 - [E]_1} \cdot \frac{D_E}{D_X + D_E} = \frac{k_1 + k_2}{k_2} + \frac{(k_1 + k_2)k_3}{k_2 k_4 (E]_0},$$

wenn I_0 [Einstein · 1⁻¹] für den Gesamtbetrag der absorbierten Strahlung im Zweikomponentensystem steht. Wenn I_0 konstant bleibt, soll Φ^{-1} somit proportional zu $[E]^{-1}$ sein. Nebst den vorgegebenen Grössen $[E]_0$, D_E und D_X war $[E]_t$ durch gas-chromatographische Analyse der bestrahlten Lösungen bestimmbar. Es ergab sich die in der Figur 3 wiedergegebene lineare Beziehung, welche die Abhängigkeit des Verbrauchs an angeregten Molekeln von der Konzentration an Ausgangsketon 24 demonstriert und *damit den bimolekularen Charakter der Reaktion* 24 \rightarrow 29 *belegt*.

Bei einer unimolekularen Variante des Mechanismus müsste anstelle von (7) die Gleichung ${}^{3}E \rightarrow 29$ eingesetzt werden, wobei die kinetische Auswertung eine von der Konzentration $[E]_{0}$ unabhängige Konstante für den Ausdruck $1/I_{0} \cdot \Phi$ liefert.

In der Tabelle 2 und in den Figuren 4-8 sind die Resultate diverser Sensibilisierungs- und Löschversuche der Umwandlung des Enons 24 in die Photoprodukte 25, 27, 28 und 29 zusammengestellt. Die Ergebnisse gewinnen in dieser Verbindungsreihe besonders dadurch an diagnostischem Wert, dass jeweils im gleichen Reaktionssystem (z. B. in *t*-Butanol-, Isopropanol-, Benzol- und Trifluortoluol-Lösung) die Löscheffekte auf die gleichzeitige Bildung von zwei oder drei Photoprodukten quantitativ erfasst werden konnten.

Die für die Sensibilisierungsversuche in Benzol gewählten Konzentrationen an 24 (Tab. 2) gewährleisten, dass eine Energieübertragung auf das Enon nur vom ange-

¹⁸) Zur Photostabilität von ortho-Hydroxy-arylketonen vgl. [26].

Konzentra	tion an	Eingestrahlte	Produk	tbildung ^b)	
24	Acetophenon	Lichtintensität : von 24 absorbierter Anteil ^a)	Bestrahlungszeit 9 Std. 29 ^d)	Bestrahlur 25 Std. ^c) 29	ngszeit 25
0,0924 м	0	100%	1	1	1
0,0888 м 0.0693 м	0,307 м 2 14 м	93% 65%	2,75°) 5.07°)	2,24 ^e) 2.08 ^e)	2,24 ^e) 7.55 ^e)

Tabelle 2. Sensibilisierung von 10-Methyl- $\Delta^{1,9}$ -octalon-(2) (24) mit Acetophenon in Benzol (Anregung mit Wellenlängen > 3400 Å)

^a) Berechnung auf Grund der Absorption der 3660 Å-Linie (= hauptsächlich absorbierte Emission) durch die Lösungen [e³⁶⁶⁰ = 8,6 (24) und 0,15 (Acetophenon) in Benzol].

^b) Gebildete Produktmengen. Basiswert der Berechnung: jeweiliges Resultat des nicht sensibilisierten Ansatzes = 1.

c) Umsatz an 24: ca. 15%.

^d) Die bei 9stdg. Bestrahlung gebildeten Mengen an **25** waren zu klein für eine quantitative Bestimmung.

e) Vgl. dazu Fussnote 19).

Fig. 4. STERN-VOLMER-Diagramm der Triplettlöschung von $2,08 \cdot 10^{-1}$ M $24 \rightarrow 25+29$ mit 2,5-Dimethyl-2,4-hexadien: t-Butanol-Lösung.

Versuchstemp. 30 °C. Quantenausbeute der Bildung von **25** bzw. **29** ohne Triplettlöscher $(\Phi_0)/$ Quantenausbeute in Gegenwart von Löscher (Φ_0) als Funktion der Konzentration an Löscher regten Acetophenon-*Triplett* möglich war⁶). Die Resultate belegen, dass die beiden Reaktionen $24 \rightarrow 25$ und $24 \rightarrow 29$ aus dem Triplett-angeregten Enon erfolgen können. Die dabei gemessenen Ausbeuten lassen allerdings erkennen, dass die Produkte in Gegenwart von Acetophenon in unterschiedlichem Ausmass labil sind¹⁹).

[(CH3)2C=CHCH=C(CH3)2]

Fig. 5. STERN-VOLMER-Diagramm der Triplettlöschung von $2,17 \cdot 10^{-1}$ M $24 \rightarrow 25 + 27 + 29$ mit 2,5-Dimethylhexa-2,4-dien: Isopropanol-Lösung.

Versuchstemp. 30 °C. Quantenausbeute der Bildung von 25, 27 bzw. 29 ohne Triplettlöscher $(\Phi_0)/$ Quantenausbeute in Gegenwart von Löscher (Φ_0) als Funktion der Konzentration an Löscher

Ein genereller Vergleich der STERN-VOLMER-Diagramme (Fig. 4–8) zeigt, dass die Zugabe von Triplettlöschern beträchtlich differenzierte Effekte auf die diversen photochemischen Umwandlungen des Enons **24** hervorruft. Als potentielle Triplettlöscher wurden wahlweise Naphtalin, 2,5-Dimethylhexa-2,4-dien und *trans*-Stilben Lösungen von **25** in *t*-Butanol, Isopropanol, Benzol, α, α, α -Trifluortoluol und Toluol

¹⁹) Aus den Absorptionsdaten lassen sich für die Bildung von **25** und **29** maximale Sollwerte [zur Definition siehe Tab. 2: Fussnote ^b)] von ~ 5 und ~ 21 (in Gegenwart von 0,307 bzw. 2,14 M Acctophenon) errechnen, wenn man von der im Folgenden durch Löschversuche erhärteten Voraussetzung, dass Enon-Triplettzustände obligatorische Vorstufen sind, und der idealisierten Annahme einer quantitativen Transfer-Quantenausbeute ausgeht. Mit steigendem Umsatz und grösserer Konzentration an Sensibilisator steigt somit auch das Defizit an **25** und **29**, an dessen Entstehung Acetophenon als Sensibilisator beteiligt sein muss.

Fig. 6. STERN-VOLMER-Diagramme der Triplettlöschung von $1,02 \cdot 10^{-1}$, $2,07 \cdot 10^{-1}$ bzw. $2,13 \cdot 10^{-1}$ M $24 \rightarrow 25 + 29$ mit Naphtalin, 2,5-Dimethylhexa-2,4-dien und Stilben: Benzol-Lösung.

Versuchstemp. 30 °C. Quantenausbeute der Bildung von 25 bzw. 29 ohne Triplettlöscher $(\Phi_0)/$ Quantenausbeute in Gegenwart von Löscher (Φ_0) als Funktion der Konzentration an Löscher [Q]

zugesetzt und auf ihre Hemmwirkung auf die Reaktionen $24 \rightarrow 25^{20}$), $24 \rightarrow 27$, $24 \rightarrow 28$ und $24 \rightarrow 29$ überprüft. Vollständig unterbunden wurden die Umsetzungen von 24 mit 1,8 m Dimethylhexadien in Isopropanol, 1,3 m trans-Stilben in Benzol und 2,27 M Naphtalin in Toluol. Φ_0/Φ_0 versus [Q] für $24 \rightarrow 25$ mit Dimethylhexadien in t-Butanol und für $24 \rightarrow 29$ mit Stilben in Benzol ergaben nach oben gekrümmte Linien²¹). Im letzteren Fall erscheint allerdings die Beziehung bis zu 0,245 M Stilben approximativ linear. In den restlichen Lösungsmittelsystemen ergaben sich für $24 \rightarrow 25$, 27 und 28 durchwegs lineare Beziehungen. Die Steigungen dieser Geraden sind in der Tabelle 3 zusammengestellt. Die Doppelbindungsverschiebung $24 \rightarrow 29$ hingegen wurde in t-Butanol durch Dimethylhexadien und in Benzol durch Naphtalin nicht beeinträchtigt. Ausgeprägte Löscheffekte mit linearen Beziehungen zwischen Φ_0/Φ_0 und [Q] liessen sich nur mit Dimethylhexadien in Isopropanol, Benzol und Trifluortoluol und mit Stilben in Benzol beobachten.

²⁰) Siehe dazu die Bemerkung in der Tabelle 1, Fussnote ^d).

²¹) Vgl. dazu WAGNER [28].

Fig. 7. STERN-VOLMER-Diagramm der Triplettlöschung von $2,23 \cdot 10^{-1}$ M $24 \rightarrow 25+29$ mit 2,5-Dimethylhexa-2, 4-dien: α, α, α -Trifluortoluol-Lösung.

Versuchstemp. 30 °C. Quantenausbeute der Bildung von **25** bzw. **29** ohne Triplettlöscher $(\Phi_0)/$ Quantenausbeute in Gegenwart von Löscher (Φ_0) als Funktion der Konzentration an Löscher

O-Acetyl-4-methyl- (33), O-Acetyl-4-chlor- (34), O-Acetyl-4-acetoxy- (35) und 4-Hydroxy-testosteron (36). – Sowohl die direkte Lichtanregung von 33, des 4-Methylhomologen von 1, als auch Sensibilisierungsversuche mit Acetophenon resultierten in *t*-Butanol-, Benzol- und Toluol-Lösung in *keiner* Produktebildung. Lediglich in *n*-Propylbromid wurde 33 zu einem Gemisch umgesetzt, aus dem das Dihydroketon 37 (Formelschema 8) sowie in kleinerer Menge ein noch nicht identifiziertes isomeres Keton isoliert wurden. In einem weiteren Versuch wurde eine Mischung von äquimolaren Mengen (je $1 \cdot 10^{-2}$ M) Testosteron und 33 in Benzol-Lösung bestrahlt. Nach vollständigem Umsatz des Testosterons (\rightarrow Desacetyl-17) konnte 33 noch immer quantitativ zurückgewonnen werden.

In einer Reihe von Testversuchen wurde ferner das Verhalten der Verbindungen 34-36 unter direkter Lichtanregung in *t*-Butanol (34, 35 und 36), Benzol (34 und 36) und Toluol (34 und 36) und unter Sensibilisierungsbedingungen mit Acetophenon in *t*-Butanol (35) überprüft. Lediglich bei der Bestrahlung der 4-Chlor-Verbindung (34) in Toluol konnte die Entstehung von mindestens vier noch nicht identifizierten Produkten beobachtet werden. In allen anderen Versuchen erwiesen sich die betreffenden Ketone als photostabil.

Fig. 8. STERN-VOLMER-Diagramm der Triplettlöschung von $3,12 \cdot 10^{-1}$ M **24** \rightarrow **28** mit Naphtalin: Toluol-Lösung.

Versuchstemp. 30 °C. Quantenausbeute der Bildung von **28** ohne Triplettlöscher (Φ_0)/ Quantenausbeute in Gegenwart von Löscher (Φ_0) als Funktion der Konzentration an Löscher [Naphtalin]

Tabelle 3.	Reaktionshemmu	ng von 24 durch	Triplei	t öscher: Sc	heinban	re Reaktions	geschwi	ndigkeits-H	Konstan	ten		
Triplettlöscher	Triplettenergie [Kcal • Mol ⁻¹]	Lösungsmittel	$24 \rightarrow k_{ m q}/k_{ m r}^{ m a}$	25) «Å _r » ^b)	$24 \rightarrow k_{ m q}/k_{ m r}^{ m a}$	27 ¹) «k _r » ^c)	$24 \neq k_{\rm q}/k_{\rm r}^{\rm a}$	28) «k _r » ^c)	$24 \rightarrow k_{ m q}/k_{ m r}$	$29_{a} (k_{r})^{a}$	Vgl. Fig. Nr	1 1
2, 5-Dimethylhexa-2, 4-dien	58 [29]	Isopropanol	9,3	$0,4\cdot10^{9}$	9,3	$0,4\cdot10^9$			1,4	$0,6\cdot 10^9$	5	I
Naphtalin	61 [30]	Benzol	10,0	$1,2 \cdot 10^{9}$					0	$>1,2 \cdot 10^{9}$	9	
2, 5-Dimethylhexa-2, 4-dien <i>trans</i> -Stilben	$58 \sim 50 [31]$	Benzol Benzol							2,5 2,5	$1,1\cdot10^9$ $1,0\cdot10^9$	99	
2, 5-Dimethylhexa-2, 4-dien	58	α, α, α-Tri- fluortoluol	8,9	$1, 4 \cdot 10^{9}$					1,4	$2,0\cdot 10^9$	7	
Naphtalin	61	Toluol					10,9	$1,2 \cdot 10^{9}$!	8	
 *) Steigung der STERN-VOLA b) Scheinbare unimolekulart Energieübertragung (#30ff c) Scheinbare pseudounimola d) Scheinbare himolekulare 	IBR-Geraden [1 · N BR-Geraden [1 · N = 3,8 · 10 ⁹ (Isop ekulare Reaktions Reaktions Reaktions Reaktions	[0] ⁻¹]. windigkeits-Kons ropanol), 1,2 · 10 geschwindigkeits	tanten 10 (Ber Konsi 14en 11	[s ⁻¹], ber izol), 1,3 · 1 tanten [s ⁻¹] Mol · l ⁻¹ · s	echnet .0 ¹⁰ (Tr , berec	aus k_q/k_r u ifluortoluol) hnet wie un echnet wie	inter A [32] u: ter ^b).	nnahme e nd 1,3 · 10	einer d 1. M	iffusionskor ol ⁻¹ · s ⁻¹ (T	trollierter oluol) [8])	H
	0											

Diskussion

Molekulare Mechanismen. – 1. Die Umlagerungen der Enone 1 und 24 und ihrer Photoisomeren 3 und 25. Die Details der Gerüstumlagerungen von 1 zum Cyclopropylketon 3 und zum Cyclopentenon 5 sowie die Beziehungen zwischen den beiden parallel ablaufenden Reaktionen waren bis anhin nicht exakt festgelegt worden. Aus den separaten Bestrahlungsversuchen von 1 (mit Licht > 3270 Å) und 3 (> 2800 Å; vgl. Formelschema 1) und aus den Versuchen der Sensibilisierung und Triplettlöschung geht neu hervor, dass die beiden Verbindungen photochemisch ineinander überführbar sind $(1 = h v \Rightarrow 3)^{22}$, und dass zudem ein direkter Reaktionsweg $1 \rightarrow 5$ besteht. Hingegen geben die Resultate keinen Hinweis dafür, ob zusätzlich auch eine Umlagerung $3 \rightarrow 5$ eintritt, sobald im Absorptionsbereich von 3 eingestrahlt wird. Auch bestehen noch keine Anhaltspunkte dafür, ob die Umsetzungen $1 \rightarrow 3 + 5$ und $3 \rightarrow 1 + 5$ jeweils von demselben oder von zwei verschiedenen primären Photoprozessen der Ausgangsketone 1 und 3 ausgelöst werden. Es ist zudem nicht bekannt, ob die Umlagerungen schrittweise oder in synchronen Einschrittprozessen ablaufen.

Der sterisch einheitliche Verlauf der Isomerisierungen zu 3 und 5 war schon unmittelbar aus dem Fehlen der auf anderen Wegen zugänglichen Stereoisomeren 38 [15] und 39 [34] erwiesen (Formelschema 9). Inzwischen ist von CHAPMAN [35] am Beispiel der beiden enantiomeren Enone 40 gezeigt worden, dass sich diese spezifisch

zu je einem der enantiomeren Cyclopropylketone **41** umlagern. Unter der Voraussetzung, dass für beide Umlagerungen $(1 \rightarrow 3 \text{ und } 40 \rightarrow 41)$ derselbe molekulare Reaktionsmechanismus gilt, war damit bereits auszuschliessen, dass das sterische Resultat der Steroidreihe lediglich die Folge einer stereoselektiven Kontrolle durch das alicyclische Gerüst ist. Vielmehr war zu erwarten [6] [33], dass es auch bei $1 \rightarrow 3$ durch eine der Reaktion inherente Stereospezifität bedingt ist. Die Umwandlung $2 \rightarrow 4$ (Formelschema 1) bestätigt dies nun, indem sie zeigt, dass die diastereotope

²²) Ein erster Hinweis auf die Photoisomerisierung $3 \rightarrow 1$ findet sich bei [33] (Vorversuche von D. GRAVEL, 1963).

Identität der Methylen-Wasserstoffatome an C-1 während der Umlagerung erhalten bleibt. Insbesonders wird dadurch eine Dissoziation der C(1,10)-Bindung und 1,2-Wanderung einer um die C(1,2)-Bindung frei drehbaren Methylenradikalgruppe C-1 (vgl. **42**; Formelschema 10) nach C-5 ausgeschlossen. Hingegen erfüllt eine schrittweise Reaktionsfolge *via* das überbrückte Diradikal **43** beide strukturellen Bedingungen – Retention der Chiralität an C-1 und Inversion an C-10 –, wie sie bereits früher [19] [36] zur Rationalisierung der Inversion an C-10 vorgeschlagen worden war. Die Wanderung der CH₂(1)-Gruppe erfolgt hier unter kontinuierlicher Orbitalüberlappung der Zentren C-1, C-5 und C-10 und damit unter Vermeidung eines freien C(1)-Radikals. Aus dem resultierenden Zwischenprodukt **44** können sowohl das Cyclopropylketon **3** (Pfeil a) als auch das Cyclopentenon **5** (Pfeil b) hergeleitet werden. Die Stereochemie der letzteren Umlagerung (**1** \rightarrow **5**), welche wiederum unter Inversion an C-10 verläuft, könnte hinreichend damit begründet werden, dass die 1,2-Wanderung von C-6 ähnlich wie in **43** wieder über ein überbrücktes Diradikal in der bevorzugten Konformation **45** erfolgt.

Eine mechanistische Alternative stellt sich den Umlagerungen $1 \rightarrow 3 + 5$ und $3 \rightarrow 1$ in synchronen Isomerisierungsprozessen, die im Formelschema 11 zusammengefasst sind. Es müssten in jedem Fall formell je zwei Bindungsänderungen im Sinne der Pfeilkombinationen a + b und a + c gekoppelt werden. Der Übergang $1 - a + b \rightarrow 3$ repräsentiert die Cycloaddition einer Einfach- und einer Doppelbindung, bei der es sich gemäss der Orbitalsymmetrieregel von WOODWARD & HOFFMANN [37] vorzugsweise um einen $[\pi^2 a + \sigma^2 a]$ -Prozess handeln dürfte, wenn man dabei die durch Formelschema 11. Synchrone Umlagerungsmechanismen für 1 und 3

strukturelle Gegebenheiten bedingten Einschränkungen berücksichtigt²³)²⁴). In Übereinstimmung mit dem experimentellen Resultat müsste dabei definitionsgemäss die σ -Bindung unter Retention an dem einen (C-1) und unter Inversion am anderen Kohlenstoffatom (C-10) gelöst werden (vgl. dazu **46**). Auch die Umwandlung $\mathbf{1} \rightarrow \mathbf{5}$ kann nach analogen Prinzipien formuliert werden, wobei allerdings daran zu erinnern ist, dass die in diesem Zusammenhang interessierenden sterischen Informationen bezüglich der CH₂(1)-⁵) und CH₂(6)-Gruppen fehlen. Mit dieser Einschränkung kann sowohl eine direkte [$\sigma^2 a + \sigma^2 a$]-Addition der C(1, 10)- und C(5,6)-Einfachbindungen als auch, unter Einbeziehung der Doppelbindung, eine [$\pi^2 a + \sigma^2 a + \sigma^2 a$]-Addition (vgl. dazu **47**, Pfeile $\mathbf{a} + \mathbf{c}$ bzw. $\mathbf{a}' + \mathbf{c}$) in Betracht gezogen werden. Eine Differenzierung zwischen schrittweisen und synchronen Mechanismen für $\mathbf{1} \rightarrow \mathbf{3} + \mathbf{5}$ ist zur Zeit nicht möglich.

Die Isomerisierung des Cyclopropylketons $3 (\rightarrow 1)$ umfasst eine Spaltung der C(1,10)-Bindung und 1,2-Wanderung der CH₂(4)-Gruppe von C-5 nach C-10. Die schrittweise Reaktionsfolge ist im Schema 10 ($3 \rightarrow 44 \rightarrow 43$ (Pfeil c) $\rightarrow 1$) formuliert. Mit der C(1,10)-Bindung von 3 wird selektiv diejenige Dreiringbindung gespalten, die

²³) Die zu $[\pi^2 a + \sigma^2 a]$ alternative $[\pi^2 s + \sigma^2 s]$ -Photocycloaddition ist für den Übergang $1 \rightarrow 3$ ausgeschlossen, da sie die Retention der Konfiguration an beiden tetrahedralen Kohlenstoffatomen (C-1 und C-10) zur Folge hätte.

²⁴) Wir danken Prof. R. HOFFMANN, Cornell University, für wertvolle Diskussionsbeiträge zu diesem Aspekt.

aus sterischen Gründen die grösste Orbitalüberlappung mit dem π -System der Ketogruppe aufweist. Dies entspricht den theoretischen Erwartungen [38] eines wesentlichen $n \to \sigma^*_{\text{Dreiring}}$ -Beitrags im Gebiet der tiefstliegenden Anregungszustände für ein konformativ fixiertes Cyclopropylketon. In der Literatur sind schon verschiedentlich derartige selektive – π^* -assistierte [39] – Dreiringöffnungen beschrieben worden [7] [35] [36] [40]–[42]. In allen diesen Fällen erfolgt jedoch anstelle einer Alkyl-(C-4)-Verschiebung wie in **3** eine entsprechende Wasserstoffverschiebung. Statt der schrittweisen Formulierung kann der Übergang $\mathbf{3} \to \mathbf{1}$ ebenfalls wieder als synchrone Isomerisierung im Sinne einer ($\sigma^2_{\text{Dreiring}} a + \sigma^2 a$)-Addition aufgefasst werden (vgl. dazu **48**). Die von BEUGELMANS [41] erzielten Resultate über die Photoisomerisierung

von C(4)-deuterierten 3α , 5α -Cyclo-6-oxo-Steroiden können als Indiz zugunsten eines synchronen Reaktionsverlaufs gewertet werden. Die vollständige Reaktivitätshemmung von **3** durch den Zusatz von 1M Pentadien und der erfolglose Sensibilisierungsversuch mit Acetophenon charakterisieren die Photoisomerisierung von **3** als Triplettreaktion²⁵), wobei der Triplettenergie eine untere Grenze von über 74 kcal/Mol (E_T des Acetophenons) gesetzt ist.

Als noch ungelöste Problemstellung verbleibt die Frage, ob bei der Bestrahlung von **3** auch eine direkte Isomerisierung zum Cyclopentenon **5** eintritt.

2. Die Toluolanlagerung an die Enone 1 und 24. Der photochemische Primärschritt dieser Reaktion besteht offenbar in der Abstraktion eines benzylischen Wasserstoffs durch das β -Kohlenstoffatom des Enonsystems (\rightarrow 49, Formelschema 12). Er ist gefolgt von der Addition eines Benzylradikals an die α -Stellung zur Ketogruppe²⁶). Als Hinweis für eine solche Folge von radikalischen Reaktionen kann die im Fall von 24 beobachtete gleichzeitige Dibenzylbildung²⁷) gelten. Auf eine weitere gute Stütze ist mit der zusätzlichen Entstehung von α, α' -verknüpften Dihydrodimeren (18 \rightarrow 20 und 21 \rightarrow 23) [11] bereits in der Fussnote ¹⁴) hingewiesen worden.

Die Toluolanlagerung $(1 \rightarrow 17, 24 \rightarrow 28)$ ist eine Photoreaktion, die unseres Wissens erstmals bei α, β -ungesättigten Ketonen beobachtet worden ist. Allerdings liegt mit der von COREY [45] beschriebenen α -Anlagerung von Isobutylen an Cyclohexenon [$\rightarrow 2$ -(β -Methallyl-)cyclohexanon] auch in mechanistischer Hinsicht möglicherweise ein Präzedenzfall vor. Eine Analogie kann auch in der α -Addition von Formamid und von Anilin an Crotonsäureester liegen, die kürzlich von SUZUKI [46] beobachtet wurde²⁸). Von besonderem Interesse ist aber die von HERZ & NAIR [49]

25) ZIMMERMANN [42] gelang kürzlich ebenfalls der Nachweis der Triplettnatur einer Cyclopropylketon-Ringöffnung.

- ²⁶) In keinem der bisher untersuchten Beispiele der Toluolanlagerung an Enone konnten wir die Entstehung von Benzylenoläthern – der Alternative zur Radikalrekombination $49 \rightarrow 17$ bzw. **28** – nachweisen. Trotz ihrer inherenten Photolabilität (vgl. [43]) sollten Benzylenoläther unter den von uns angewandten Reaktionsbedingungen (keine Lichteinstrahlung in ihrem Absorptionsbereich und vermutlich keine Sensibilisatoren von genügend hoher Transferenergie) angereichert werden, wenn nicht die Lokalisierung der ungepaarten Spindichte in **49** auf dem α -Kohlenstoffatom eine O-Alkylierung weitgehend unterbindet (zur Struktur von α -Ketoradikalen vgl. [44]).
- ²⁷) In der Steroidreihe ($1 \rightarrow 17$) wurde darauf verzichtet, die Bildung von Dibenzyl nachzuweisen.
- ²⁸) SCHUSTER [47] erwähnt die Bildung von Dibenzyl bei der Bestrahlung des 10'-Hydroxyderivates von **24** in Toluol, ohne aber ein entsprechendes α -Benzylketon zu isolieren. Ferner scheint es auf Grund der veröffentlichten Daten möglich, dass das von LEERMAKERS [48] isolierte Lösungsmitteladdukt bei der Bestrahlung von Cyclopentenon in Cyclohexan dem Produkt einer α -Anlagerung entspricht.

Formelschema 12. Die Toluolanlagerung an 1 und 24

beschriebene Cyclisation $50 \rightarrow 51$, die offenbar ebenso wie die von uns gefundene Toluolanlagerung durch eine H-Abstraktion durch das β -Kohlenstoffatom des angeregten Enon-Chromophors ausgelöst wird. Dem dafür verantwortlichen Reaktivzustand wurde von den Autoren die ${}^{3}(\pi, \pi^{*})$ -Konfiguration zugeordnet (vgl. dazu den Abschnitt über die «Natur der angeregten Reaktivzustände»].

3. Die Doppelbindungsverschiebung $1 \rightarrow 16$ und $24 \rightarrow 29$. Die Beteiligung bimolekularer Reaktionsschritte an der Doppelbindungsverschiebung ist in der Steroidreihe durch das Resultat des Mischversuchs mit O-Acetyl-testosteron (1) und deuteriertem Testosteron (insbesonders durch die Ausbildung von 9% 16-d₁) und in der bicyclischen Reihe durch den Nachweis der Konzentrationsabhängigkeit der Reaktion $24 \rightarrow 29$ (siehe Fig. 3) belegt. Das letztere Resultat zeigt überdies, dass es sich bereits bei der photochemischen Primärreaktion um einen bimolekularen Prozess handeln muss, und zwar offensichtlich um die Wasserstoffabstraktion von einem nicht-angeregten Enon durch den Carbonylsauerstoff eines zweiten, angeregten Enons. Eine anschliessende Disproportionierung der resultierenden zwei Radikale kann einerseits das ursprüngliche photoangeregte Ausgangsketon zurückbilden, und andererseits direkt zum β, γ -ungesättigten Keton führen. Die beiden Reaktionsschritte sind im Schema 13 formuliert.

Mit dieser Interpretation stimmt u.a. auch die Beobachtung überein, dass die Reaktion $1 \rightarrow 16$ in Benzollösung, der etwas *t*-BuOD zugesetzt wurde, zu mindestens 60% unter Einbau von einem Deuterium erfolgt. Das Resultat dokumentiert die Intervention von einer oder mehreren Zwischenstufen, die sich für einen raschen intermolekularen Protonenaustausch eignen. Dies gilt sicher für das Hydroxylproton von **52**. Mit einem Dien-enol vom Typus **54** könnte ein zusätzlicher Kandidat für einen solchen Austausch auftreten. Die Existenz von **54** als Zwischenprodukt hängt von der zur Zeit nicht entscheidbaren Frage ab, ob **16** bzw. **29** direkt durch eine H-Addition an die α -Stellung zur Ketogruppe von **53**, oder indirekt durch eine Addition an den Sauerstoff von **53** (\rightarrow **54**) gebildet werden. Dien-enole vom Typus **54**

Formelschema 13. Die Doppelbindungsverschiebung von 1 und 24

der Steroidreihe protonisieren sich im elektronischen Grundzustand bekanntlich [50] in der γ -Stellung, sodass eine Isomerisierung zu β, γ -ungesättigten Ketonen (16 bzw. 29) auf diesem Weg ausser Betracht kommt. Für den angeregten Zustand jedoch ist die alternative Protonisierung an der α -Stellung von 54 zu erwarten [51]. Es ist daher durchaus denkbar, dass bei der Bestrahlung von 1 und 24 eventuell intermediär auftretende Dien-enole (54) als Triplettlöscher der angeregten Ketone wirken und sich anschliessend aus dem Triplettzustand zu den tautomeren Produkten (16 bzw. 29) isomerisieren.

Der relativ hohe Anteil (mind. 15%) an monodeuteriertem Keton 16, der bei der Photoisomerisierung von 1 in Hexadeuterobenzol anfällt, ist unerwartet und bemerkenswert. Auf der Basis des Reaktionsschemas 13 muss angenommen werden, dass als zusätzliche Prozesse die Abstraktion von Wasserstoff bzw. Deuterium aus dem aromatischen Lösungsmittel durch das angeregte Enon²⁹) und/oder das Radikal vom Typus 53 auftritt³⁰).

Mit den Umwandlungen $1 \rightarrow 16$ und $24 \rightarrow 29$ wurden erstmals photochemisch induzierte Doppelbindungsverschiebungen in α, β -ungesättigten Ketonen, welche durch eine intermolekulare H-Abstraktion ausgelöst werden, experimentell belegt. Dieser Reaktionstyp erweckt speziell schon

²⁹⁾ Erst kürzlich wurde von RUBIN [52] am Beispiel des 9,10-Phenanthrachinons gezeigt, dass bei photoangeregten Ketonen mit einer Wasserstoffabstraktion aus Benzol gerechnet werden muss. Dieses Lösungsmittel darf daher in dieser Hinsicht nicht a priori als inert gelten.

³⁰⁾ Der im Formelschema 13 vorgeschlagene Reaktionsmechanismus berücksichtigt nicht eine direkte Partizipation des Lösungsmittels an der Doppelbindungsverschiebung. Die Resultate mit 1 in t-BuOD-haltigem Benzol und mit 24 in den alkoholischen Lösungsmitteln (u. a. → 29) dürften diese Möglichkeit im Sinne einer obligatorischen Bedingung abwerten. Die in Hexadeuterobenzol für 1 → 16 nachgewiesene Übertragung von aromatisch gebundenen Deuteriumatomen schliesst sie aber als fakultativer Parallelvorgang nicht aus und verdient daher eine noch eingehendere experimentelle Überprüfung.

deswegen Interesse, weil die Isomerisierung aus strukturellen Gründen nicht durch eine intramolekulare ($\gamma \rightarrow \alpha$)-H-Verschiebung nach dem Schema $\mathbf{a} \rightarrow \mathbf{c}$ ausgelöst werden kann. Solche als «Photoenolisierungen» (vgl. **b**) interpretierte Prozesse sind für $n \rightarrow \pi^*$ -angeregte aliphatische

 α, β -ungesättigte Carbonylverbindungen in Lösung hinlänglich bekannt [53]. Unter den vereinzelten Beispielen von Dekonjugierung cyclischer Enone kann diejenige von Cyclodecen-2-on noch immer nach dem Schema $\mathbf{a} \rightarrow \mathbf{c}$ formuliert werden [54]. Hingegen ist von uns kürzlich [55] für O-Acetyl-10 α -testosteron (55; Formelschema 14) ein zu $\mathbf{1} \rightarrow \mathbf{16}$ offenbar analoger Fall beschrieben worden: die relativ rasche Doppelbindungsverschiebung $\mathbf{55} \rightarrow \mathbf{56}$ bei der $n \rightarrow \pi^*$ -Anregung in Benzollösung mit Licht > 3270 Å. Auch bei $\mathbf{55}$ ist diese Reaktion in *t*-Butanol nicht zu beobachten, solange im selben Wellenlängenbereich eingestrahlt wird. Erst mit 2537 Å-Licht erfolgt in diesem Lösungsmittel eine spezifisch π,π^* -induzierte Reaktion, die interessanterweise wieder in der Isomerisierung $\mathbf{55} \rightarrow \mathbf{56}$ resultiert [55] [56].

Formelschema 14

Als weitere Beispiele von Doppelbindungsverschiebungen in α, β -ungesättigten Ketonen, deren Struktur eine intramolekulare «Photoenolisierung» ausschliesst, sind die Fälle $57 \rightarrow 59$, $58 \rightarrow 60$ und $61 \rightarrow 62$ zu erwähnen [57].

Die Natur der angeregten Reaktivzustände. – Die Triplettnatur der Reaktionen von O-Acetyltestosteron $(1 \rightarrow 3 + 5, 1 \rightarrow 16, 1 \rightarrow 17)$ ist mit der vollständigen Reaktionshemmung durch 0,31M Naphtalinzusätze und mit dem Nachweis der Sensibilisierung durch Acetophenon hinreichend dokumentiert. Dasselbe gilt auch für die Umwandlungen des bicyclischen Ketons $(24 \rightarrow 25 - 29)$.

Die Triplettenergien von 1 ($E_{\mathrm{T}(n,\pi^*)} = 73,3$, $E_{\mathrm{T}(n,\pi^*)} = 74,4$ kcal/Mol in 2-Methyltetrahydrofuran-Glas [3]) gewährleisten genügend exotherme Energieübertragungen auf Naphtalin und 2, 5-Dimethyl-2, 4-hexadien ($E_T = 61$ bzw. 58 kcal/Mol [30] [29]). Für diese Prozesse könnten daher *a priori* diffusionskontrollierte Geschwindigkeitskonstanten erwartet werden. Wie aus Figur 2 hervorgeht, ist dies aber mindestens für die Reaktionshemmung durch Dimethylhexadien nicht der Fall. Die Triplettlöschung durch Naphtalin erfolgt deutlich rascher³¹).

Als photochemische Primärprozesse sind für die Doppelbindungsverschiebung die H-Abstraktion durch den Carbonylsauerstoff (vgl. $1^* \rightarrow 52$; Formelschema 13), und für die Toluolanlagerung die H-Addition an den β -Kohlenstoff des Enons (vgl. 1 bzw. $24 \rightarrow 49$; Formelschema 12) identifiziert worden. Ein Hinweis dafür, dass die beiden Umwandlungsarten tatsächlich die unterschiedlichen Reaktivitäten von zwei Triplettzuständen repräsentieren, findet sich für die Steroidreihe in den STERN-VOLMER-Diagrammen (Figur 2) der Triplettlöschung mit Naphtalin und mit Dimethylhexadien. In beiden Fällen ($1 \rightarrow 16$ und $1 \rightarrow 17$) unterscheiden sich die Steigungen der betreffenden Geraden um Beträge, die zwar nicht sehr gross sind, aber doch ausserhalb der experimentellen Fehlergrenzen liegen. Weitaus deutlicher treten diese Differenzen aber in den STERN-VOLMER-Diagrammen des bicyclischen Ketons 24 in Erscheinung. Hier wird mit Naphtalin, im Gegensatz zur Toluolanlagerung ($24 \rightarrow 28$; Figur 8), die Doppelbindungsverschiebung in Benzol ($24 \rightarrow 29$; Figur 6) überhaupt nicht beeinflusst. Eine Hemmwirkung auf $24 \rightarrow 29$ tritt in Benzol erst mit Dimethylhexadien und mit trans-Stilben ($E_T \sim 50 \text{ kcal/Mol [31]}$) auf. Die betreffenden Geraden haben im Konzentrationsbereich bis ca. 0,25 M Löscher beinahe identische Steigungen (2,2 bzw. 2,5 l/Mol; siehe Tab. 3). Das differenzierte Verhalten von $24 \rightarrow 29$ in Benzol gegenüber Naphtalin, Dimethylhexadien und trans-Stilben reflektiert möglicherweise die Energiedifferenzen zwischen dem Enon und diesen Kohlenwasserstoffen. Falls sich die Geschwindigkeitskonstanten des Energietransfers auf das Dien und auf Stilben nicht wesentlich unterscheiden [vgl. dazu ³¹]], wäre dann die Energie des reaktiven Tripletts der Doppelbindungsverschiebung $24 \rightarrow 29$ in den Bereich zwischen 58-61 kcal/Mol zu setzen (d.h. Energieübertragung von 24 auf Naphtalin endotherm und exotherm von 24 auf Dien und Stilben), also wesentlich tiefer als jene des Steroidvertreters in $1 \rightarrow 16$.

Eine ebenso klare kinetische Differenzierung zwischen den reaktiven Triplettzuständen ergibt sich aus den STERN-VOLMER-Diagrammen der Umlagerung $(24 \rightarrow 25)$ und der Doppelbindungsreduktion $(24 \rightarrow 27)$ einerseits und der Doppelbindungsverschiebung $(24 \rightarrow 29)$ andererseits (siehe Fig. 4–7). Von besonderem Informationswert sind die Resultate in Isopropanollösung (Fig. 5), indem hier die Triplettlöschung der drei Reaktionen parallel ausgemessen werden konnte. Dabei zeigte sich, dass offenbar die gleiche angeregte Spezies für die Umlagerung $24 \rightarrow 25$ und die Reduktion $24 \rightarrow 27$ verantwortlich ist.

Die Daten der Umlagerung und der Doppelbindungsreaktion decken sich hingegen mit denjenigen der Toluolanlagerung. So beträgt die scheinbare Reaktionsge-

³¹) Solche Unterschiede in der Triplettlöschung von Ketonen durch diverse Diene unter exothermen Energietransfer-Verhältnissen sind auch schon von WAGNER und von SCHUSTER [58] gefunden worden; für ein weiteres Beispiel im Falle eines makromolekularen Energiedonators vgl. [59]. In [58] ist darauf hingewiesen worden, dass nebst den energetischen Kriterien auch sterische Faktoren für die Energieübertragung während der Kollisionsphase zwischen Donator und Acceptor bestimmend sein können. Bei Steroidverbindungen wie 1 ist der angeregte Chromophor in einem relativ ausgedehnten gesättigten Kohlenstoffgerüst fixiert. Es wäre einleuchtend, wenn sterische Faktoren gerade hier besonders stark in Erscheinung träten. Für den Nachweis von sterischen Effekten auf eine Energieübertragung vgl. auch [60].

schwindigkeitskonstante « k_r » in Benzol, errechnet aus den Steigungen unter Annahme einer lediglich diffusionskontrollierten Löschung durch Naphtalin (siehe Tab. 3), in beiden Fällen $1,2 \cdot 10^9 \text{ s}^{-1}$. Zusammenfassend kann man daher sagen, dass insgesamt zwei reaktive Triplettzustände nachgewiesen wurden, von welchen der eine für die Umlagerung, die Doppelbindungsreduktion und die Toluoladdition, und der andere für die Doppelbindungsverschiebung verantwortlich ist.

Die sich jetzt stellende Frage nach der Konfigurationszuordnung der Reaktivitäten der beiden angeregten Triplettzustände ist von grossem allgemeinen Interesse. Es sind bisher noch keine zuverlässigen Kriterien erarbeitet worden, die eine solche Korrelation von Elektronenkonfiguration und chemischen Reaktivitäten bei angeregten Enonen erlauben. Mit der vorliegenden Arbeit – insbesonders mit der Beobachtung, dass sich zwei Triplettzustände des gleichen Cyclohexenons u. a. dadurch unterscheiden, dass der eine H am Sauerstoff und der andere H am β -Kohlenstoff addiert – zeichnen sich aber signifikant differenzierte Reaktivitäten als chemische Kriterien ab. Der Versuch scheint daher gerechtfertigt, diese Unterschiede als Indizien bei der Zuordnung der Elektronenkonfiguration für die beiden Triplettzustände zu verwenden. Die H-Abstraktion durch den Sauerstoff (\rightarrow Doppelbindungsverschiebung) dürfte dabei – wie bereits allgemein angenommen – als charakteristische Reaktion des ³(n, π^*)-angeregten Ketons, und die H-Addition an den β -Kohlenstoff (\rightarrow Toluolanlagerung) als solche des ³(π , π^*)angeregten Ketons bezeichnet werden.

Diese zur Diskussion gestellte Zuordnung muss vorläufig als Postulat bewertet werden und bedarf noch einer kritischen Überprüfung³²). Die beobachtete Lösungsmittelspezifität der Enonreaktionen kann zugunsten der vorgenommenen Einteilung interpretiert werden: In beiden Versuchsreihen (mit 1 und mit 24) dominieren in den alkoholischen bzw. polaren Lösungsmitteln die als $T_{n,n*}$ -Reaktionen bezeichneten uni- bzw. pseudounimolekularen Prozesse, und im apolaren Benzol die bimolekularen $T_{n,n*}$ -Reaktionen. Im ebenfalls apolaren Toluol, im Gegensatz zu Benzol einem sehr guten H-Donator, gewinnt wieder die pseudounimolekulare $T_{n,n*}$ -Reaktion über die $T_{n,n*}$ -Reaktion die Oberhand, d.h. die H-Abstraktion durch das π, π^* -Triplett erfolgt

³²) Die extrem diffuse Form der $T_{\pi,\pi^*} \rightarrow S_0$ -Emission selbst bei 4,2°K ist als Folge der Nichtplanarität der Enongruppierung von 1 im äquilibrierten π,π^* -Triplettzustand gedeutet worden [3]. Modellbetrachtungen zeigen, dass die Verdrillung des Enonsystems bevorzugt in der in 63 gezeigten Richtung erfolgen kann (vgl. dazu die nicht verdrillte Darstellung 46, Formelschema 11). Ein Winkel von nahezu 45° zwischen den p(-4)- und p(-5)-Orbitalen könnte dabei maximal erreicht werden. In diesem Zusammenhang ist interessant, dass bei dieser Verformung die Überlappung der Orbitale, welche im Falle einer $[\pi^2 a + \sigma^2 a]$ -Cycloaddition bei der Umlagerung $1 \rightarrow 3$ zu neuen Bindungen schliessen, im Fall $\sigma(-1) + p(-5)$ stark und im Fall $p(-4) + \sigma(-10)$ in geringem Ausmass crleichtert wird (vgl. dazu 46 und 63). Mit zunehmendem sp^3 -Charakter von C-5 (zunehmende 1,5-Bindungstendenz) wächst auch die 4, 10-Überlappung.

⁶³

rascher als jene des n, π^* -Tripletts. Mit dem Wechsel von alkoholischen Lösungsmitteln zu Kohlenwasserstoffen (Benzol) ist eine Erniedrigung der T_{n,π^*} -Energie und eine (zumeist geringere) Erhöhung der T_{π,π^*} -Energie zu erwarten³³). Unter der plausiblen Voraussetzung, dass im jeweiligen System allgemein die Reaktionen des tieferliegenden Anregungszustandes überwiegen (*vide supra* für die Ausnahme in Toluol), erfordert die Lösungsmittelspezifität dabei eine beträchtliche Annäherung oder wahrscheinlicher eine Kreuzung der Energieniveaus mit $E_{T(n,\pi^*)} > E_{T(\pi,\pi^*)}$ in Alkohol. Tatsächlich sind solche Verhältnisse für 1 in 2-Methyltetrahydrofuran spektroskopisch nachgewiesen worden [3]. Sie dürften in polareren Alkoholen noch etwas ausgeprägter sein. Eine Illustration dieses generellen Modells ist in Figur 9 wiedergegeben.

Zur Photostabilität von O-Acetyl-4-methyl-testosteron (**33**). Die Auftrennung der Triplettniveaus von **33** ($E_{T(\pi,\pi^*)} = 67,0, E_{T(n,\pi^*)} = 75,3$ kcal/Mol in 2-Methyltetrahydrofuran [3]) ist wesentlich grösser als in **1** (8,3 gegenüber 1,1 kcal/Mol). Es ist durchaus plausibel, wenn diese Energiedifferenz zu gross ist für eine Überschneidung der Triplettniveaus beim Lösungsmittelwechsel. Damit wäre das π,π^* -Triplett in *t*-Butanol und in den aromatischen Kohlenwasserstoffen der tiefstliegende Anregungszustand und auch die begünstigte potentielle Reaktivspezies.

Auf Grund der Ergebnisse mit 1 wäre es daher einerseits verständlich, dass 33 in Benzol keine Tendenz zur Doppelbindungsverschiebung zeigt. Auch das Ausbleiben dieser Reaktion im Mischversuch Testosteron + 33 ist hinsichtlich der Triplettenergie-Verhältnisse einleuchtend, wenn bei Kollisionen zwischen angeregten Testosteron-Molekeln und nicht angeregtem 33 das letztere nicht als H-Donator wirkt (auf Grund des Reaktionsmechanismus nach Schema 13 ist das als

³³) Vgl. dazu das entsprechende Verhalten der Singlettenergien. Die $n \rightarrow \pi^*$ -Absorptionsmaxima von 1 und 24 verschieben sich bathochrom um Beträge von ca. 5–7 kcal/Mol beim Wechsel von *t*-Butanol- zu Benzollösung (siehe Tab. 1).

H-Donator dienende Enon die Vorstufe des Δ^{5} -3-Ketons), sondern als Triplettlöscher des Testosterons.

Die scheinbar weitgehende Photostabilität von **33** in den Lösungsmitteln *t*-Butanol, Benzol und Toluol erfordert aber auch eine Erklärung für das gleichzeitige Fehlen von T_{π,π^*} -Reaktionen wie z. B. die Umlagerung und die Toluoladdition. Ein möglicher Grund für das Ausbleiben der Umlagerung (analog zu $1 \rightarrow 3+5$) liegt eventuell in der grösseren sterischen Kompression, hervorgerufen durch die zusätzliche 4-Methylgruppe, in den Übergangszuständen oder Zwischenprodukten, welche zu den Methylhomologen von **3** und **5** führen. Eine ähnliche Begründung wurde von uns kürzlich [55] für das Ausbleiben einer Umlagerung von O-Acetyl-10 α -testosteron (**55**) in die Isomeren **38** und **39** (Formelschema 9) bei der $n \rightarrow \pi^*$ -Anregung in *t*-Butanol erwogen. Die Stichhaltigkeit solcher Argumente steht zur Zeit aber noch nicht fest; u.a. sind dabei auch möglicherweise wichtigere Faktoren vernachlässigt, welche den elektronischen Aufbau der betreffenden angeregten Chromophore betreffen. Diesselbe Unsicherheit gilt momentan auch für das Ausbleiben der Toluolanlagerung an **33**.

Schlussbemerkungen

Bei den hier beschriebenen Ergebnissen der Photochemie von 1 und von 24 verdienen vor allem drei Punkte der speziellen Erwähnung:

1) Die detaillierten stereochemischen Aspekte der Umlagerung $1 \rightarrow 3$ wurde anhand des 1 α -deuterierten O-Acetyltestosterons (2) abgeklärt.

2) Es wurden ausgeprägte Lösungsmitteleffekte auf die photochemischen Umsetzungen von 1 und von 24 gefunden. Diese Reaktionen umfassen die photoreversible Umlagerung vom Typus $1 \gtrsim 3$ und die Umlagerung 1 bzw. $3 \rightarrow 5$, die Reduktion der Doppelbindung (vgl. $24 \rightarrow 27$), die Toluolanlagerung $(1 \rightarrow 17)$ und die Doppelbindungsverschiebung $(1 \rightarrow 16)$.

Die Doppelbindungsreduktion wurde an **1** bereits früher [6] bei der Bestrahlung in Äthanol $(\rightarrow 5\alpha$ -Dihydroketon) und seither an weiteren α, β -ungesättigten Ketonen beobachtet [61]³⁴). Mit der Toluolanlagerung unter Ausbildung von α -Benzylketonen ist eine neuartige, präparativ ergiebige Photoreaktion erschlossen worden. Der Anlagerungsmodus steht im Gegensatz zur Addition von z. B. Diäthyläther an den Carbonylkohlenstoff von **1** [6] und von Alkoholen und Aminen an die Doppelbindung, wobei entweder der Sauerstoff ($\rightarrow \beta$ -Alkoxyketone) [63] oder das heterosubstituierte Kohlenstoffatom der anlagernden Molekel [61] [64] an den β -Kohlenstoff des Enons addiert wird.

3) Die Feststellung, dass die untersuchten Photoreaktionen das Resultat spezifisch differenzierter Reaktivitäten von zwei Triplett-Anregungszuständen des gleichen Cyclohexenons sind, und schliesslich der Versuch, auf Grund der molekularen Mechanismen der primären Photoprozesse eine Reaktivitätszuordnung für die ${}^{3}(n,\pi^{*})$ - und ${}^{3}(\pi,\pi^{*})$ -Zustände von 1 und 24 zu treffen. Analoge Beobachtungen an Cycloalkenonen wurden auch schon von anderen Arbeitsgruppen veröffentlicht. Nach DE MAYO [65] erfolgt die photochemische Cycloaddition von Olefinen an Cyclopentenon spezifisch aus dem energetisch höher liegenden Triplettzustand dieses Ketons. Der tieferliegende T₁-Zustand ist lediglich zur H-Abstraktion durch den Carbonylsauerstoff befähigt. CHAPMAN fand, dass zwei Triplettzustände des Isophorons

1000

³⁴) In diesem Zusammenhang ist zu erwähnen, dass als Primärprodukt der photochemischen Reduktion der Doppelbindung von Phenalenon-(1) in Isopropanol mittels ESR.-Messungen 1-Hydroxyphenalenyl-(1)-Radikal nachgewiesen worden ist [62]. In diesem Fall erfolgt demnach als Primärprozess eine H-Abstraktion durch den Carbonylsauerstoff – im Gegensatz zu der von uns postulierten π, π^* -Zuordnung der Doppelbindungsreduktion $24 \rightarrow 27$ im gleichen Lösungsmittel also um eine n, π^* -Reaktion.

in spezifischer Weise dimerisieren [66], und dass sich 1,1-Dimethoxyäthylen in ebenfalls spezifischer Weise an zwei Triplettzustände des 4,4-Dimethylcyclohexen-2-ons cycloaddiert [67].

Die Ausführung dieser Arbeit wurde durch die Unterstützung seitens des Schweiz. NATIONAL-FONDS ZUR Förderung der WISSENSCHAFTLICHEN FORSCHUNG (Projekt Nr. 4700) ermöglicht. D. B. dankt ausserdem der J. R. GEIGY, AG., Basel, und der SYNTEX S.A., Mexiko, für Stipendien.

Experimenteller Teil

Für die präparative Säulenchromatographie wurde, falls nicht anders erwähnt, Kieselgel MERCK (Korngrösse 0,05–0,2 mm) eingesetzt. Für die Dünnschicht-Chromatographie (DS.) dienten MERCK-DC-Fertigplatten F_{254} (Kieselgel). Nachweis der Substanzflecke: unter UV.-Licht und durch Besprühung der getrockneten Schicht mit konz. H_2SO_4 und anschliessendes Erhitzen der Platte. Als Fliessmittelsystem wurde für beide Chromatographie-Methoden im allgemeinen Benzol-Äthylacetat-(4:1) verwendet.

Die Smp. wurden in offenen Kapillaren im Ölbad bestimmt und sind nicht korrigiert. Die $[\alpha]_{D}$ -Werte wurden in einem 5 cm-Rohr gemessen.

UV.-Spektren: λ_{max} sind in Å angegeben und die ε -Werte in Klammern angefügt.

IR.-Spektren: v_{max} in cm⁻¹.

NMR.-Spektren: 60 oder 100 MHz. Die Lage der Signale ist in δ -Werten angegeben, bezogen auf internes (CH₃)₄Si ($\delta = 0$). Abkürzungen: s (Singlett), d (Dublett), q (Quadruplett), m (Multiplett), b (breites, undeutlich strukturiertes Signal), J (Kopplungskonstante in Hz). Die durch Integration ermittelte Protonenzabl für die einzelnen Signale stimmt mit den jeweils angefügten Zuordnungen überein.

Alle UV.-Bestrahlungen wurden bei 30° unter Stickstoff ausgeführt. Als Lichtquelle diente, wenn nicht anders erwähnt, ein Hg-Hochdruckbrenner Q 81, 70 W (QUARZLAMPEN GMBH., Hanau), der in einem doppelwandigen Pyrexfinger (Schichtdicke 8 mm) montiert war. Zur gleichzeitigen Lichtfiltrierung und Brennerkühlung wurden verwendet: «Filterlösung 1»: Aceton (UV.-Durchlässigkeitsbereich > ca. 3270 Å); «Filterlösung 2»: Wässerige Lösungen (Volumen 1 l) von NaBr (750 g) + Pb(NO₃)₂ (8 g) (UV.-Durchlässigkeitsbereich > ca. 3400 Å); «Filterlösung 3»: Wässerige 0,75-proz. KH-Phtalatlösung (UV.-Durchlässigkeitsbereich > ca. 3040 Å).

1. Steroidketone: O-Acetyl-testosteron-Reihe

1.1. Herstellung von 2, 4, 13 und 14. – O-Acetyl-1 α -deuterotestosteron (2). Eine Lösung von 5 g O-Acetyl-1-dehydro-testosteron (9) und 1 g $[(C_6H_5)_3P]_3Rh(I)Cl$ in 130 ml Benzol wurde bei Zimmertemp. in einer Hydrierapparatur mit D₂ umgesetzt⁸). Nach 5 Std. war die D₂-Aufnahme beendet. Die Reaktionslösung wurde rasch durch eine Säule aus 150 g neutralem Al₂O₃ (Akt. III) filtriert, mit weiteren 330 ml Benzol nachgewaschen und die Filtrate im Vakuum eingedampft. 4,8 g des resultierenden Rohproduktes $[O-Acetyl-1\alpha, 2\alpha-dideutero-testosteron (10)]^{35}$ wurden 1 Std. mit 80 ml sied. 0,2 N methanolischer NaOH behandelt. Das Rohprodukt wurde direkt bei Zimmertemp. in 36 ml Acetanhydrid-Pyridin-(1:2) acetyliert und die Lösung nach 12 Std. im Vakuum eingedampft. Chromatographie: 3,1 g 2, Smp.140–141° (1 × krist. aus Äther-Hexan). IR. (CHCl₃): u.a. 990, 2160; im übrigen weitgehend deckungsgleich mit dem Spektrum von 1. MS.: $M^+ = 331$ ($C_{21}H_{29}DO_3$, 97,5%). DS.: Laufstrecken und Anfärbung von 1 und 2 waren identisch.

2-Oxo-4 β -deutero-17 β -acetoxy-1 α , 5 β -cyclo-10 α -androstan (4). Eine Lösung von 1,4 g 2-Oxo-17 β -acetoxy- \varDelta^{3} -1 α , 5 β -cyclo-10 α -androsten (11) [22] und 0,4 g [(C₆H₅)₃P]₃Rh(I)Cl in 60 ml Benzol wurde nach der Vorschrift für 9 \rightarrow 10 deuteriert und aufgearbeitet. Eine 20-mg-Probe des filtrierten Rohproduktes wurde bei 150°/0,01 Torr sublimiert: 2-Oxo-3 β , 4 β -dideutero-17 β -acetoxy-1 α , 5 β -

³⁵) Die Verbindung **10** liess sich nicht ohne Deuteriumverlust chromatographieren. So war die Isotopenzusammensetzung einer 200-mg-Probe des Rohproduktes nach chromatographischer Reinigung an Kieselgel d_2 61%, d_1 38% und d_0 1%. Die Analyse des Endproduktes **2**, das nach der im Text beschriebenen Herstellungsmethode erhalten wurde, zeigt, dass der Fehlbetrag an Deuterium fast ausschliesslich auf den Austausch an C-2 in **10** während der Chromatographie an Kieselgel zurückzuführen ist.

cyclo-10 α -androstan (12), Smp. 169°, MS.: $M^+ = 332$ ($C_{21}H_{28}D_2O_3$, 88%), 331 ($C_{21}H_{29}DO_3$, 12%). Das restliche Rohmaterial wurde, wie für $10 \rightarrow 2$ beschrieben, alkalisch behandelt und reacetyliert: 4, Smp. 168–169° (320 mg nach $3 \times$ Krist. aus Äther-Hexan und anschliessender Sublimation). $[\alpha]_D = +38^{\circ} (c = 1,01 \text{ in CHCl}_3)$. IR. (CCl₄): C-D-Streckschwingung im 2000 cm⁻¹-Bereich nicht sichtbar; Spektren von 3 und 4 deckungsgleich bis auf das Fehlen von schwachen Banden bei 1000 und 1303 cm⁻¹ bei 4. MS.: $M^+ = 331$ ($C_{21}H_{29}DO_3$, 97%). DS.: Laufstrecken und Anfärbung von 3 und 4 waren identisch.

Bromierung von 2-Oxo-17 β -acetoxy-1 α , 5 β -cyclo-10 α -androstan (3) [22] und von 4³⁶). Proben von je 280 mg 3 bzw. 4 wurden 72 Std. bei Zimmertemp. mit 900 mg C₅H₅N·HBr·Br₂ [14] in 15 ml CH₂Cl₂-Pyridin-(50:1)-Lösungen bromiert. Zur Aufarbeitung wurde mit 15 ml CH₂Cl₂ verdünnt und mit verd. wässeriger Na₂S₂O₃-Lösung geschüttelt. Chromatographie des Rohproduktes mit Benzol-Äthylacetat-(9:1):

1) Aus **3**: 187 mg 2-0xo-3 β -bromo-17 β -acetoxy-1 α , 5 β -cyclo-10 α -androstan (14), Smp. 203–204° (krist. aus CH₃OH). [α]_D = -17° (c = 1,5 in CHCl₃). Circulardichrogramm¹¹): $\Delta \epsilon_{max} = -4,22$ (2290 Å), +2,71 (3130 Å) [in Dioxan]; $\Delta \epsilon_{max} = -5,44$ (2090 Å), -4,28 (2320 Å), +2,75 (3075 Å) [in C₂H₅OH]. IR. (CCl₄): 667, 1245, 1738. NMR. (CDCl₃): 0,81/s CH₃-18; 1,18/s CH₃-19; 1,82/s CH-1; 2,03/s 17-OCOCH₃; 2,32/q/J_{3,4 $\beta} = 6$ Hz, $J_{4\alpha,4\beta} = 15$ Hz, CH-4 β ; 2,89/q/J_{3,4 $\alpha} = 8$ Hz, $J_{3,4\beta} = 6$ Hz, CH-3; ca. 4,6/bq CH-17 (vgl. Fig. 1). MS.: m/e 408 + 410 (M^+ - Br).}}

 $\rm C_{21}H_{29}BrO_{3}$ — Ber. C 61,61 – H 7,14 – Br 19,52% — Gef. C 61,91 – H 7,26 – Br 19,32%

2) Aus 4^{36}): 208 mg 2-Oxo-3 β -bromo-4 β -deutero-17 β -acetoxy-1 α , 5 β -cyclo-10 α -androstan (13), Smp. 202–204° (krist. aus CH₃OH). [α]_D = -20° (c = 1,5 in CHCl₃). NMR. (CDCl₃): kein Signal für CH-4 β (überprüft mit max. Amplitude, Filter 0,2 und sweep time 2500 s auf HA-100 VARIAN Spektrometer); 2,89/ $d/J_{3,4\alpha} = 8$ Hz, CH-4 α ; 4,14/ $d/J_{3,4\alpha} = 8$ Hz, CH-3; übrige Signale identisch mit denjenigen von 14 (vgl. Fig. 1). MS.: m/e 409 + 411 (M^+ - Br; C₂₁H₂₈BrDO₃, d₁ = 97%).

1.2. UV.-Bestrahlungen in t-Butanol. – 1.2.a. Direkte Lichtanregung von 1. 1,25 g 1 wurden in 250 ml t-BuOH gelöst und 32 Std. unter magnetischer Rührung in einem zylindrischen Gefäss mit zentral angeordnetem Brenner bestrahlt; Filterlösung 1. Die Lösung wurde darauf im Vakuum eingedampft und das Rohgemisch chromatographiert: 290 mg 3 + 142 mg 5 [6] [7] [34] + 580 mg 1³⁷).

1.2.b. Direkte Lichtanregung von 2. Die Bestrahlung wurde analog zu Versuch Nr. 1.2.a durchgeführt. Das resultierende Cyclopropylketon 4 wurde direkt in das $\beta\beta$ -Bromderivat 13 (d₁ = 97% nach MS.) übergeführt (siehe unter Abschnitt 1.1).

1.2.c. 1: Sensibilisierung mit Acetophenon und Triplettlöschung mit Naphtalin. Versuch A: 70 mg 1 in 10 ml t-BuOH; Versuch B: 70 mg 1+1 ml Acetophenon in 9 ml t-BuOH; Versuch C: 70 mg 1+4,3 mg Naphtalin in 10 ml t-BuOH; Versuch D: 70 mg 1+400 mg Naphtalin in 10 ml t-BuOH. Die vier Proben wurden in exzentrisch um den Brenner (Filterlösung 1) angeordneten Pyrexröhrchen gleichzeitig 6 Std. bestrahlt, darauf wurden die Lösungen im Vakuum eingedampft und die Rückstände auf Dünnschichtplatten (Schichtdicke 0,25 mm) mit Benzol-Äthylacetat-(2:1) chromatographiert. Die Fraktionen wurden mit Äthylacetat extrahiert und gewogen: Resultate siehe Tabelle 4.

1.2.d. Sensibilisierung von 2 mit Acetophenon. Eine Lösung von 1 g 2 und 15 ml Acetophenon in 150 ml t-BuOH wurde in 11 Pyrexröhrchen in exzentrischer Anordnung um den Brenner (Filterlösung 1) 8 Std. bestrahlt. Nach DS. bestand das Reaktionsgemisch aus 2, 4 und 6^5) sowie Acetophenon und diversen nicht identifizierten Nebenprodukten. Bei der präparativen Chromatographie wurde nur das Cyclopropylketon 4 (123 mg) in reiner Form isoliert und direkt in das $\beta\beta$ -Bromderivat 13 übergeführt (siehe unter 1.1).

³⁶) Insgesamt wurden drei Proben von 4 bromiert, die aus 11 durch katalytische Deuterierung via 12 sowie aus 2 durch UV.-Bestrahlung und durch sensibilisierte Umsetzung (Versuche Nr. 1.2.b und 1.2.d) erhalten wurden.

³⁷) Die Bestrahlung von 1 in t-BuOH wurde in den erstbeschriebenen Versuchen [6] [7] mit Licht cines Wellenlängenbereichs ausgeführt, der auch kürzerwellige Strahlung umfasste. Dies hatte zur Folge, dass nebst der Ausgangsverbindung 1 (ε_{max}^{3140} = 77) auch die photolabilen Produkte 3 (ε_{max}^{2880} = 66) und 5 (ε_{max}^{3075} = 69, alle drei Messungen in t-BuOH) relativ stark absorbierten und ein komplexeres Produktengemisch als oben entstand.

Versuch	Ausgangslösu	ing (in t-BuOH)		Reaktionsger	nisch ^a)	Ausbeute
	1	Acetophenon	Naphtalin	1	3	an 3 ^b)
A	$2,12 \cdot 10^{-2}$ M	-	_	$1,50 \cdot 10^{-2}$ M	0,22 · 10 ⁻² м	35,3%
в	2,12 · 10 ^{−2} м	8,34 · 10 ^{−1} м	-	0,64 · 10 ⁻² м	$0,55 \cdot 10^{-2}$ M	35,7%
C	2,12 · 10 ⁻² м	-	3,36 · 10 ⁻³ м	1,61 · 10 ⁻² м	0,165 · 10−²м	32%
D	$2,12 \cdot 10^{-2}$ M		3,13 · 10 ⁻¹ м	2,12 · 10 ^{−2} m	0 м	-

Tabelle 4. Umlagerung $1 \rightarrow 3+5$ in t-Butanol: Sensibilisierung mit Acetophenon und Triplettlöschung durch Naphtalin

^a) Der Gehalt an Cyclopentenon 5 wurde nicht bestimmt; vgl. dazu Fussnote⁸).

^b) Bezogen auf umgesetztes Ausgangsmaterial (1).

1.2.e. Direkte Lichtanregung von 3. 1 g 3 in 300 ml t-BuOH wurde 12 Std. unter magnet. Rührung in einem zylindrischen Gefäss mit zentral angeordnetem Brenner (Pyrexfinger mit H₂O-Kühlung) bestrahlt. Eine DS.-Kontrolle der Reaktionslösung nach 4stdg. Bestrahlungszeit zeigte praktisch ausschliesslich die drei Flecke von 1, 3 und 5. Chromatographie des Rohproduktes mit Benzol-Äthylacetat-(9:1): 95,5 mg 1+421 mg Ausgangsketon (3) + 187 mg 5. Identifikation durch DS., Misch-Smp. und IR. Nach DS. hatten sich auch bereits kleinere Mengen der Photoprodukte von 5 (u. a. 7 und 8)⁸) gebildet.

1.2.f. Sensibilisierungsversuch von 3 mit Acetophenon. Eine Lösung von 4 mg 3 in 0,5 ml t-BuOH und 0,05 ml Acetophenon wurde in einem extern zum Brenner (Filterlösung 2) angeordneten Pyrexröhrchen 17 Std. bestrahlt. Laut DS. war *nur Ausgangsmaterial* (3) nachweisbar. Insbesonders bildeten sich 1 und 5 nicht.

1.2.g. Vollständige Triplettlöschung von 1 mit 1,3-Pentadien und mit Naphtalin und von 3 mit 1,3-Pentadien. Ansätze: Es wurden drei Proben von je 0,5 ml Volumen (5 mg 1 in t-BuOH) bestrahlt (Filterlösung 3): a) ohne Triplettlöscher, b) 0,313M an Naphtalin, c) 1M an Pentadien. Nach vollständigem Umsatz von 1 zu 3 und 5 in der Probe a) war in b) und c) noch keine Bildung von 3 und 5 nachweisbar (DS.-Analyse).

Ansätze: Es wurden zwei Proben von je 0,5 ml Volumen (5 mg **3** in *t*-BuOH) bestrahlt (Filterlösung 3): a) ohne Triplettlöscher, b) 1M an Pentadien. Nach bereits starker Produktebildung in Probe a) hatte in b) noch *keinerlei Reaktion* stattgefunden (DS.-Analyse).

1.3. UV.-Bestrahlungen in Benzol. – 1.3.a. Direkte Lichtanregung von 1. 500 mg 1 wurden in 250 ml Benzol gelöst und 24 Std. unter magnetischer Rührung in einem zylindrischen Gefäss mit zentral angeordnetem Hg-Hochdruckbrenner (125 W) bestrahlt; Filterlösung 1. Die Lösung wurde darauf im Vakuum eingedampft und der Rückstand schnell³⁸) an 70 g Kieselgel MERCK reinst (Korngrösse 0,05–0,2 mm) chromatographiert: 168 mg 16^{39}) + 108 mg 1+26 mg einer Fraktion, die nach DS. dem Cyclobutandimeren von 1 [5] entsprach, + 128 mg Mischfraktionen, die hauptsächlich 1, 16 und das Dimere von 1 enthielten. Die geschätzte Gesamtausbeute an 16, bezogen auf umgesetztes Ausgangsmaterial³⁸), betrug 60–65%.

1.3.b. Triplettsensibilisierung von 1 mit Acetophenon. Die Versuche wurden in Pyrexröhrchen ausgeführt, die 3 mg 1 und 50 mg Acetophenon in 0,45 ml Benzol bzw. 3 mg 1 in 0,50 ml Benzol enthiclten und exzentrisch um den Brenner (Filterlösung 1) angeordnet waren. Periodische DS.-

³⁸) Das ⊿⁵-Keton 16 isomerisiert sich beim Kontakt mit Kieselgel allmählich zur konjugierten Verbindung 1. Die hier beschriebenen, chromatographisch erzielten Ausbeuten an 16 wurden durch möglichst rasche Elution erhalten, sodass die Rückisomerisierung 16 → 1 nicht allzu stark ins Gewicht fällt.

³⁹) Literaturwerte von 16: Smp. 147° (Sinterung ab 130°). [α]_D = -30,5° (in C₂H₅OH) [68]. Die oben erhaltene Substanzprobe war mit einem nach bekannten Verfahren [68] [69] hergestellten Präparat von 16 identisch: Smp. 140–152° (der grosse Smp.-Bereich ist offenbar darauf zurückzuführen, dass 16 bereits ab 120° beginnt, sich zu 1 zu isomerisieren); [α]_D = -25° (c = 0,47 in CHCl₃, 1,53 in CH₃OH). 1R. (CS₂): 1242, 1720, 1735. NMR. (C₆D₆): 0,78+0,83/2s CH₃-18 und -19; 1,77/s 17-OCOCH₃; ca. 2,0–2,3/m CH₂-2; ca. 2,9/b CH₂-4; ca. 4,75/b CH-17; ca. 5,1/b CH-6.

Kontrollen während der Bestrahlung zeigten einen anfänglich wesentlich *rascheren Umsatz* $1 \rightarrow 16$ in den Acetophenon-haltigen Lösungen als in den nicht-sensibilisierten Proben. Bei längeren Bestrahlungszeiten wurde **16** unter Sensibilisierungsbedingungen weiter umgesetzt; die dabei entstehenden Folgeprodukte wurden nicht untersucht.

1.3.c. Triplettlöschung von 1 mit Naphtalin und 2,5-Dimethylhexa-2,4-dien. 4 ml-Proben von Benzollösungen, die $2 \cdot 10^{-2}$ M 1 und verschiedene Konzentrationen an Naphtalin enthielten, wurden in Quarzküvetten (Schichtdicke 1 cm) in einer «merry-go-round»-Anordnung [31] (Filterlösung 1) bestrahlt. Der Umsatz an 1 wurde an Hand der Absorption der 3340-Å-Linie (= $n \rightarrow \pi^*$ -Absorptionsmaximum von 1 in Benzol, $\varepsilon = 55$) in den bestrahlten Lösungen bestimmt. Die vollständige Unterbindung der Reaktion von 1 wurde mit 3,13 · 10 ⁻¹M Naphtalin erreicht.

Eine analoge Versuchsreihe wurde mit Benzollösungen von $1 \cdot 10^{-2}$ M **1** und verschiedenen 2,5-Dimethylhexa-2,4-dien-Konzentrationen ausgeführt. Die Resultate der beiden Versuchsreihen sind in *Fig.* 2 graphisch ausgewertet.

1.3.d. Direkte Lichtanregung von 1 in Hexadeuterobenzol. 100 mg 1 wurden 34 Std. in 10 ml C_6D_6 durch Filterlösung 1 bestrahlt. Chromatographie wie bei Versuch 1.3.a lieferte ein \varDelta^5 -Keton-Präparat (vgl. 16) von 4% d₂, 15% d₁ und 81% d₀ nach MS.⁴⁰).

1.3.e. Direkte Lichtanregung von 1 in Benzol+t-BuOD. 70 mg 1+39,5 mg t-BuOD⁴¹) in 20 ml Benzol wurden 7 Std. durch Filterlösung 1 bestrahlt. Chromatographie wie bei Versuch 1.3.a gab ein Λ^{5} -Keton-Präparat (vgl. 16) von 60% d₁ und 40% d₀ nach MS.⁴⁰).

1.3.f. Mischversuch mit 1+ deuteriertem Testosteron $(44\% d_5, 45\% d_4, 6\% d_3, 2\% d_2, 1\% d_0)$. 70 mg 1+70,2 mg Testosteron in 20 ml Benzol wurden 17 Std. durch Filterlösung 1 bestrahlt. Chromatographie wie bei Versuch 1.3.a gab 22,8 mg 16 $(1\% d_2, 9\% d_1, 90\% d_0)$, 40,1 mg 1 $(100\% d_0) + 20$ mg deuteriertes 3-Oxo-17\beta-hydroxy- Δ^5 -androsten $(4\% d_5, 26\% d_4, 39\% d_3, 20\% d_2, 5\% d_1, 5\% d_0)$ (Identifikation mit nicht deuteriertem Vergleichsmaterial [68] durch DS. und Misch-Smp.) + 33,5 mg Testosteron $(30\% d_5, 44\% d_4, 17\% d_3, 5\% d_2, 20\% d_1, 1\% d_0)$.

1.4. UV.-Bestrahlungen in Toluol. – 1.4.a. Direkte Lichtanregung von 1. 1,2 g 1 wurden in 250 ml Toluol (thiotolenfrei; FLUKA) gelöst und 17 Std. unter magnetischer Rührung in einem zylindrischen Gefäss mit zentral angeordnetem Hg-Hochdruckbrenner (125 W) bestrahlt; Filterlösung 1. Die Lösung wurde darauf im Vakuum eingedampft und der Rückstand mit Benzol-Äthylacetat-(9:1) chromatographiert (nach DS. des Rohgemisches lagen nebst 1 und 17 auch Spuren von 16 und 3-Oxo-17β-acetoxy-androstanen vor): 510 mg 1+320 mg eines Gemisches der an C-4 und C-5 stereoisomeren 3-Oxo-4-benzyl-17β-acetoxy-androstane (17), Smp. 152° (subl. bei 180°/0,03 Torr und 2 × krist. aus CH₃OH). [α]_D = +13° (c = 1,2 in CHCl₃). IR. (CCl₄): 700, 1243, 1604, 1712, 1738, 3030, 3065, 3090. NMR. (CCl₄): 0,78/s CH₃-18; 1,00+1,06 (ca. 1:1)/2s CH₃-19; 1,95/s 17-OCOCH₃; ca. 2,5-3,15/m CH₂-4'; ca. 4,5/b CH-17; 7,10/s (breite Basis) 4'-C₆H₅. MS.: $M^+ = 422$. C₂₈H₃₈O₃ Ber. C 79,58 H 9,06% Gef. C 79,36 H 9,09%

Eine Probe dcs Gemisches 17 wurde 2 Std. in sied. Dioxan-H₂O-(1:1)+2 Mol-Äqu. NaOH unter N₂ hydrolysiert: 3-Oxo-4 ξ -benzyl-17 β -hydroxy-5 ξ -androstan-Gemisch. Nach NMR. (CCl₄) deckten sich die Signalpositionen und -intensitäten mit Ausnahme von CH₃-18 (0,68/s) und CH-17 (ca. 3,5/b) mit denjenigen von 17.

1.4.b. Triplettsensibilisierung von 1 mit Acetophenon. Pyrexröhrchen mit 3 mg 1 in 0,50 ml Toluol bzw. 3 mg 1+50 mg Acetophenon in 0,45 ml Toluol wurden in exzentrischer Anordnung zum Brenner (Filterlösung 1) bestrahlt. Periodische DS.-Kontrollen zeigten einen wesentlich rascheren Umsatz $1 \rightarrow 17$ in den Acetophenon-haltigen Proben als in den nicht sensibilisierten Lösungen.

1.4.c. Triplettlöschung von 1 mit Naphtalin und 2,5-Dimethylhexa-2,4-dien. 4-ml-Proben von Toluollösungen, die $1.4 \cdot 10^{-4}$ M 1 und verschiedene Konz. an Naphtalin enthielten, wurden in Quarzküvetten (Schichtdicke 1 cm) in einer «merry-go-round»-Anordnung [31] (Filterlösung 1)

 ⁴⁰) Der mit der Chromatographie verbundene D-Verlust, mit dem auf Grund der Erfahrungen mit 10 im gleichen System³⁵) zu rechnen ist, wurde hier nicht überprüft.

⁴¹) t-BuOD wurde aus 99,6-proz. D₂O und t-BuOK unter trockenem N₂ hergestellt. Das Rohdestillat wurde vor Gebrauch zweimal nacheinander über Na destilliert.

bestrahlt. Der Umsatz an **1** wurde an Hand der Absorption der 3345-Å-Linie (= $n \rightarrow \pi^*$ -Absorptionsmaximum von **1** in Toluol, $\varepsilon = 44$) in den bestrahlten Lösungen bestimmt. Die vollständige Unterbindung der Reaktion von **1** wurde mit 0,313 M Naphtalin erzielt.

Eine analoge Versuchsreihe wurde mit Toluollösungen von $1.4 \cdot 10^{-2}$ M 1 und verschiedenen 2,5-Dimethylhexa-2,4-dien-Konzentrationen ausgeführt. Die Resultate der beiden Versuchsreihen sind in *Fig.* 2 graphisch ausgewertet.

2. Steroidketone 33-36

2.1. O-Acetyl-4-methyl-testosteron (33). – 2.1.a. Direkte Lichtanregung und Sensibilisierung von 33 in t-BuOH, Benzol und Toluol. Alle sechs Versuche wurden in Pyrexröhrchen in exzentrischer Anordnung zum Brenner (Filterlösung 1) durchgeführt (direkte Anregung: je 4 mg 33 in 0,6 ml Lösungsmittel; Sensibilisierung: je 4 mg 33 + 0,06 ml Acetophenon in 0,54 ml Lösungsmittel). Die periodische DS.-Analyse der Reaktionslösungen zeigte auch nach langen Bestrahlungszeiten keine nennenswerte Produktebildung.

2.1.b. Direkte Lichtanregung von **33** in n-Propylbromid. 644 mg **33** wurden in 98 ml Propylbromid gelöst und **72** Std. unter magnet. Rührung in einem zylindrischen Gefäss mit zentral angeordnetem Brenner (Filterlösung 1) bestrahlt. Die braun gefärbte Lösung wurde darauf durch Al₂O₃ (Akt. III, neutral) filtriert. Nach DS. enthielt das Filtrat kein **33** mehr, sondern fast ausschliesslich zwei andere, fast zusammenfallende Flecke. Chromatographie an 90 g Kicselgel: 40 mg 3-Oxo-4\alpha-methyl-17\beta-acetoxy-5\alpha-androstan (**37**), Smp. 178-179°. $[\alpha]_D = -5°$ (c = 1.05 in CH₃OH). IR. (CCl₄): 1245, 1712, 1738. NMR. (CDCl₃): 0,82/s CH₃-18; 0,99/d/J = 7 Hz, CH₃-4'; 1,09/s CH₃-19; 2,04/s 17-OCOCH₃; ca. 4,6/b CH-17. MS.: $M^+ = 346^{42}$). Eine zweite Fraktion bestand aus 5 mg eines Isomeren: Smp. 133° (unschaff). IR. (CCl₄): 1245, 1714, 1739. MS.: $M^+ = 346$. Die Zwischenfraktion von 510 mg stellte ein Gemisch der beiden Isomeren dar.

2.1.c. Mischversuch mit Testosteron + **33** in Benzol. Eine Benzollösung von äquimolaren Mengen (je 1 · 10^{-2} M) Testosteron und **33** wurden durch Filterlösung 1 bestrahlt und die Reaktionslösung mit DS. analysiert: Testosteron wurde vollständig umgesetzt unter Ausbildung des Δ^{5} -Isomeren, während **33** unverändert blieb.

2.2. O-Acetyl-4-chloro-testosteron (34), O-Acetyl-4-acetoxy-testosteron (35) und 4-Hydroxytestosteron (36). Die Versuche wurden nach der Beschreibung unter 2.1.a ausgeführt. In t-BuOH (34, 35 und 36), Benzol (34 und 36) und Toluol (36) bei direkter Anregung sowie bei der Scnsibilisierung mit Acetophenon in t-BuOH (35) konnten keine Produktbildungen beobachtet werden. Hingegen entstanden aus 34 bei direkter Anregung in Toluol mindestens vier nicht identifizierte Produkte.

3. 10-Methyl- $\Delta^{1,9}$ -octalon-(2)-Reihe

3.1. Direkte Lichtanregung von **24** [71] in verschiedenen Lösungsmitteln. Präparative Ansätze wurden mit **24** in t-BuOH, Benzol und Toluol ausgeführt. In jedem Fall wurde 1 g **24** in 80 ml Lösungsmittel in zylindrischen Gefässen mit zentral angeordnetem Brenner (125 W; Filterlösung 2) 72 Std. bestrahlt. Die Rührung erfolgte durch einen am Gefässboden eingeblasenen Strom aus Sauerstoff-freiem N₂. Nach der Bestrahlung wurde die Lösung im Vakuum stark eingeengt. Die Produktisolierung erfolgte mittels Gas-Chromatographie (GC.) an AEROGRAPH-Geräten (Modell A-90P3); Trägergas Helium, 3 atü. t-BuOH-Ansatz: NPGS-Kolonne (20% Ncopentylglykolsuccinat auf Chromosorb W, 60-80 mesh; Abmessung 10' × 3/8") bei 240°. Benzol-Ansatz: NPGS-Kolonne (5' × 1/4") bei 170°. Toluol-Ansatz: Das Rohprodukt wurde erst an einer SF-96-Kolonne (5' × 1/4") bei 245° in **28** und ein Gemisch aus **25**, **26**, **27** und **29** aufgetrennt, anschliessend wurden aus dem letzteren die Komponenten wie beim Benzol-Ansatz isoliert. Die Produkte **27** und **29** konnten dabei unter den angegebenen GC.-Bedingungen nicht voneinander getrennt werden. Zur Differenzierung dieser Komponenten in ihrem Gemisch wurde jeweils ein aliquoter Teil 5 Min. bei 80° mit methanolischem NaOH behandelt und das mit Äther extrahierte Reaktionsgemisch (bestehend aus **24**+**29**) auf der NPGS-Kolonne (5' × 1/4") bei 170° aufgetrennt.

⁴²) Literaturwerte für **37** [70]: Smp. 174–176°, $[\alpha]_{D} = -28^{\circ}$ (c = 0.12 in CH₃OH).

Produkte: 1) 2-Methyl-tricyclo[5.3.0^{1.7}.0^{2.7}]decan-10-on (25). GC.: Retention 0,71⁴³). UV. (C₂H₅OH): 282 (78). IR. (CCl₄): 1718, 3030 (schwach); (in Substanz): 1715, 3020 (schwach)⁴⁴). NMR. $(CDCl_3): 1,20/s \ 2-CH_3; (C_6D_6): 0,93/s \ 2-CH_3^{44})$. MS.: $M^+ = 164 \ (C_{11}H_{16}O)$. Semicarbazon-Derivat: Zers. 231-232° (krist. aus CH₂Cl₂-CH₃OH + Spur Pyridin)⁴⁴). IR. (CHCl₃): 1560, 1650, 1680, 2850, ca. 3030 (schwach), ca. 3140 (schwach), 3370, 3390, 3510. MS.: $M^+ = 221$.

C₁₂H₁₉N₃O Ber. C 65,12 H 8,65 N 18,99% Gef. C 65,05 H 8,66 N 18,92%

2,4-Dinitrophenylhydrazon von 25: Smp. 121-122° (4 × krist. aus CH₂Cl₂-CH₃OH).

 $C_{17}H_{22}N_4O_4$ Ber. C 58,94 H 6,40 N 16,18% Gef. C 58,90 H 6,43 N 16,15%

2) 3 - (1' - Methylcyclopentyl) - cyclopenten - 2 - on - (1) (26). GC.: Retention 1,12⁴³). UV. (C₂H₅OH): 232 (13440). IR. (CCl₄): 845, 865, 988, 1180, 1604, 1680, 1712 (rel. breit), 2860, ca. 3070 (schwach). NMR. $(C_6D_6): 0.84/s 1'-CH_3$; ca. 1,0–1,7/b $(CH_2)_4$ des Cyclopentyl-Teils; 2,04/s mit geringer Feinstrukturierung, $(CH_2)_2$ des Cyclopentenon-Teils; ca. 5,88/bs CH-2⁴⁶). MS.: $M^+ = 164$ ($C_{11}H_{16}O$).

3) trans-10-Methyl-decalon-(2) (27). GC.: Retention: 0,5943). Identifikation nach Literaturangaben [25] durch IR., MS. ($M^+ = 166$; $C_{11}H_{18}O$) und NMR. (CCl_4): 1,18/s 10- CH_3 ; kein Methylsignal des cis-Isomeren (0,97/s in CCl₄).

4) Gemisch von cis- und trans-Benzyl-10-methyl-decalon-(2) (28; mit äquatorialer Benzylgruppe). GC.: Retention 5,3⁴⁷). IR. (CCl₄): 700, 1494, 1604, 1713, 3020, 3055, 3080. NMR. (CCl₄): 1,09+ 1,27/2s (Intensität ca. 1:3) 10-CH_a; ca. 2,1–2,6 und ca. 2,9–3,2/*bm*; 7,1/*s* aromat. H. MS.: $M^+ = 256$.

C₁₈H₂₄O Ber. C 84,32 H 9,44% Gef. C 84,34 H 9,56%

Eine Probe von 20 mg 28 wurde 2 Std. unter N₂ mit 2 Mol-Äqu. NaOH in 4 ml sied. Dioxan D_2O -(1:1)-Gemisch behandelt. Das Produkt wurde darauf mit Äther extrahiert, die organische Phase mit D_2O gewaschen, getrocknet und durch GC. (SF-96-Kolonne, 5' × 1/4") bei 245° (Retention 5,3) gereinigt. NMR. $(CCl_4): 2,25+3,05/2d/J = 14$ Hz, benzyl. CH_2 ; CH_3 - und aromat. Signale wie bei 28. MS.: 2,5% d₄, 41,5% d₃, 37% d₂, 14,5% d₁, 3,5% d₀.

5) 10-Methyl-A⁸-octalon-(2) (29). GC.: Retention 0,59⁴³). IR. (CS₂): 1165 (schwach, nicht mit v_{CO} von **27** übereinstimmend), 1722, 3020. NMR. (C_8D_8): 0,85/s 10-CH₃; ca. 1,6–1,8/b+ca. 2,0– 2,25/m CH₂-3 und CH₂-7; ca. 2,8/bm CH₂-1; ca. 5,1/b CH-8. MS.: $M^+ = 164$ (C₁₁H₁₆O).

Zur quantitativen Auswertung wurden parallele Ansätze von je 18–19 mg 24 in 0,8 ml t-BuOH, Isopropanol, Toluol, Pyridin, Benzonitril, Benzol und α, α, α -Trifluortoluol 36 Std. in Pyrexröhrchen in einer «merry-go-round»-Anordnung durch Filterlösung 2 bestrahlt. Die GC.-Analyse erfolgte an NPGS- und SF-96-Kolonnen (5' \times 1/4") bei 170° bzw. 245°. Zum Vergleich wurden analoge Versuche auch mit 1 durchgeführt und mittels DS. qualitativ ausgewertet. Die Resultate sind in Tab. 1 zusammengestellt.

3.2. Direkte Anregung von 24 in Benzol: Konzentrationsabhängigkeit der Ausbildung von 29. Fünf Proben (4,3, 6,3, 9,4, 16,5 und 32,5 mg 24 in je 1 ml einer 9,61 · 10 ⁻³M Lösung von *o*-Hydroxyacctophenon in Benzol) wurden 9 Std. in einer «merry-go-round»-Anordnung durch Filterlösung 2 bestrahlt. Die GC.-Analyse erfolgte an der NPGS-Kolonne $(5' \times 1/4'')$ bei 170°. Die kinetisch ausgewerteten Rcsultate (siehe Text) sind in der Fig. 3 graphisch dargestellt.

- ⁴³) Bezugsbasis der Retentionswerte: 24 = 1,0. Gemessen in der NPGS-Kolonne (5' \times 1/4") bei 170°.
- 44) Vgl. dazu die Literaturangaben für 2517). [21]: NMR. (laut Privatmitteilung in CCl₄) 1,15/s 2-CH₃. [19]: Semicarbazon-Derivat, Smp. 170,5-171°. In [21] wurde für 25 irrtümlich eine zu tiefe ν_{CO} -Frequenz angegeben. Ein direkter Vergleich der 1R.-Spektren (beide in Substanz) ergab eine befriedigende Übereinstimmung unseres Präparates mit der in [21] beschriebenen Verbindung 25⁴⁵).
- ⁴⁵) Wir danken Prof. C. D. GUTSCHE, Washington University, St. Louis/USA, für ergänzende Angaben betreffs 25 und die Überlassung eines IR.-Spektrums dieser Verbindung.
- ⁴⁶) Vgl. dazu die entsprechenden Daten von 3-t-Butyl-cyclopenten-(2)-on-(1) (18) [24]. Eigene Messungen an 18 – UV. (C₂H₅OH): 228,5 (12700). IR. (CCl₄): 845, 867, 986, 1179, 1604, 1680, 1710 (relativ breit), 2860, ca. 3070 (schwach). NMR. (C₆D₆): 0,84/s 3-C(CH₃)₃; 2,04/s mit geringer Fcinstrukturierung, (CH₂)₂; ca. 5,88/bs CH-2.
- ⁴⁷) Bezugsbasis des Retentionswerts: 24 = 1,0. Gemessen in der SF-96-Kolonne (5' × 1/4") bei 245°.

3.3. Sensibilisierung von **24** mit Acetophenon in Benzol (siehe Tab. 2). Die Bestrahlungen und GC.-Analysen wurden wie unter 3.2 ausgeführt. Umsatz des nicht sensibilisierten Parallelversuchs: ca. 15%.

3.4. Triplettlöschung der Photoreaktionen von **24** mit Naphtalin, 2,5-Dimethylhexa-2,4-dien und trans-Stilben in verschiedenen Lösungsmitteln (siehe Fig. 4-8 und Tab. 3). Die Bestrahlungen und GC.-Analysen wurden wie unter 3.2 ausgeführt. Maximale Umsätze der Löscher-freien Parallelversuche ca. 20%. Die anfängliche Lichtabsorption betrug mindestens 90% der eingestrahlten Intensität der 3660 Å-Linie.

Versuche zur vollständigen Reaktionshemmung von **24** wurden mit 1,8 m Dimethylhexadien in Isopropanol, 1,3 m *trans*-Stilben in Benzol und 2,27 m Naphtalin in Toluol ausgeführt. In jedem Fall wurden gleichzeitig zwei Proben (mit und ohne Löscher) in Pyrexröhrchen extern zum Brenner (Filterlösung 2) bestrahlt. Nach GC.-Analyse zeigten sich hohe Umsätze von **24** in den Löscherfreien Proben, aber *keine Reaktion* in den Proben mit Löscher (in Benzol trat statt dessen *trans* \rightarrow *cis*-Isomerisierung von Stilben ein).

3.5. Direkte Lichtanregung von **25** in t-BuOH. Eine Lösung von 320 mg **25** in 8 ml t-BuOH wurde 6 Tage in einem Pyrexröhrchen mit magnet. Rührung in exzentrischer Anordnung zum Brenner (Wasserkühlung) bestrahlt. Die GC.-Analyse des Reaktionsgemisches erfolgte an der NPGS-Kolonne $(5' \times 1/4'')$ bei 170° : ca. 2% **24** + ca. 68% **25** + 4% **26** + ca. 9% eines Diastereomeren-Gemisches von 3-(1'-Methylcyclopentyl)-cyclopentanon-(1) (**30**), GC.: Retention 0,59⁴³). IR. (CCl₄): 1745, 2855. MS.: m/e 166 (M⁺, C₁₁H₁₈O), 83 (Basis-Pik).

4. Herstellung von 25 aus 10-Methyl- $\Delta^{1,9;3}$ -hexalon-(2) (31)

2-Methyl-tricyclo[$5.3.0^{1.7}.0^{2.7}$]decen-8-on-(10) (32). 1 g 31 [72]⁴³) wurde in 120 ml abs. Dioxan gelöst und unter magn. Rührung in einem zylindrischen Gefäss bestrahlt. Als Lichtquelle wurde ein Hg-Niederdruckbrenner NK 6/20 (Hauptemission bei 2537 Å) der QUARZLAMPEN GMBH., Hanau, verwendet, der in einem wassergekühlten Quarzfinger zentral angeordnet war. Die Bestrahlung wurde unter periodischer GC.-Überwachung (NPGS-Kolonne, $10' \times 3/8'', 235^{\circ}, 60$ ml/Min. He) geführt und nach 3 Std. abgebrochen. GC.: 35% 31+61% 32 (die Verbindung 32 war das erste feststellbare Produkt, das während des Versuchs entstand). Die Lösung wurde im Vakuum eingedampft und das Rohgemisch an 140 g Kieselgel mit Benzol-Äthylacetat-(12:1) chromatographisch aufgetrennt: 448 mg 32. UV. (C_2H_5OH): 237 (5200), 333 (35). IR. (CCl₄): 750, 812, 1700, 2980, 3035, 3070. NMR. (C_6D_6): 1,02/s 2-CH₃; $5,72/q/J_{8,9} = 5,5$, $J_{1,9} = 1$ Hz, CH-9; $6,61/q/J_{8,9} = 5,5$, $J_{1,8} \sim 0,75$ Hz, CH-8. MS.: $M^+ = 162$.

C₁₁H₁₄O Ber. C 81,44 H 8,70% Gef. C 81,63 H 8,89%

Semicarbazon von **32**: Smp. 216° ($4 \times \text{krist.}$ aus CH₃OH).

C₁₂H₁₇N₃O Ber. C 65,72 H 7,81 N 19,16% Gef. C 65,64 H 7,88 N 19,28%

Hydrierung von 32. 167 mg 32 wurden in 30 ml CH₃OH an 5-proz. Pd-Kohle hydriert. Nach vollendeter H₂-Aufnahme (ca. 25 ml H₂ in 12 Min.) wurde vom Katalysator abfiltriert und das Filtrat im Vakuum eingedampft. Das Rohprodukt war im GC. (NPGS-Kolonne, $10' \times 3/8''$, 235°, 60 ml/Min. He) einheitlich (25 und 32 weisen bei diesen GC.-Bedingungen praktisch die gleichen Retentionszeiten auf!). Die Identifikation des Hydrierungsproduktes mit 25 erfolgte durch Vergleich der IR.- (in Substanz) und MS.-Spektren sowie an Hand der beiden Semicarbazon-Derivate (gleiche Zers.-Punkte, keine Depression bei der Mischprobe).

Die Elementaranalysen wurden im mikroanalytischen Laboratorium der ETH (Leitung: W. MANSER) ausgeführt. Die Aufnahme der NMR.-Spektren erfolgte in unserer Instrumentalabteilung (Leitung: Prof. W. SIMON). Herrn PD Dr. J. SEIBL verdanken wir die Aufnahme und Diskussion der MS.-Spektren.

⁴⁸) Das Dienon **31** wurde nach einer von W. H. HOPFF & A. S. DREIDING ausgearbeiteten Dehydrierungsvorschrift mittels Dicyano-dichlor-*p*-benzochinon aus **24** hergestellt. Das verwendete Präparat **31** wies die zu erwartenden IR.-, NMR.-, MS.- und UV.-Daten [λ_{max} = 241 und 312,5 nm, ε = 15800, 48 (in C₂H₅OH)] auf. – Wir danken Herrn Prof. DREIDING für die Privatmitteilung.

LITERATURVERZEICHNIS

- [1] 51. Mitt.: C. GANTER & J.-F. MOSER, Helv. 52, 967 (1969).
- [2] a) K. SCHAFFNER, «Adv. Photochemistry» 4, 81, Ed. W. A. NOYES, JR., G. S. HAMMOND & J. N. PITTS, JR., Interscience Publ., New York 1966; - b) P. J. KROPP, «Organ. Photochemistry», 1, 1, Ed. O. L. CHAPMAN, M. Decker, Inc., New York 1967.
- [3] G. MARSH, D. R. KEARNS & K. SCHAFFNER, Helv. 51, 1890 (1968).
- [4] D. Belluš & K. Schaffner, Chimia 23, (1969).
- [5] A. BUTENANDT, L. KARLSON-POSCHMANN, G. FAILER, U. SCHIEDT & E. BIEKERT, Liebigs Ann. Chem. 575, 123 (1952), und frühere Arbeiten.
- [6] B.NANN, D.GRAVEL, R.SCHORTA, H.WEHRLI, K.SCHAFFNER & O.JEGER, Helv. 46, 2473 (1963).
- [7] O. L. CHAPMAN, T. A. RETTIG, A. A. GRISWOLD, A. I. DUTTON & P. FITTON, Tetrahedron Letters 1963, 2049.
- [8] J.G.CALVERT & J.N.PITTS, JR., "Photochemistry", S.627, John Wiley & Sons, Inc., New York 1966.
- [9] F. WILKENSON & J. T. DU BOIS, J. chem. Physics 39, 377 (1963).
- [10] S.G.COHEN, D.A. LAUFER & W.V. SHERMAN, J. Amer. chem. Soc. 86, 3060 (1964).
- [11] D. BELLUŠ & K. SCHAFFNER, unveröffentlichte Ergebnisse.
- [12] W.G. DAUBEN, G.W. SHAFFER & N. D. VIETMEYER, J. organ. Chemistry 33, 4060 (1968).
- [13] A. J. BIRCH & K.A.M. WALKER, J. chem. Soc. [C] 1966, 1894; C. DJERASSI & J. GUTZWILLER, J. Amer. chem. Soc. 88, 4537 (1966).
- [14] C.DJERASSI & C.R. SCHOLZ, J. Amer. chem. Soc. 70, 417 (1948).
- [15] J. FREI, C. GANTER, D. KÄGI, K. KOCSIS, M. MILJKOVIĆ, A. SIEWINSKI, R. WENGER, K. SCHAFF-NER & O. JEGER, Holv. 49, 1049 (1966).
- [16] C. DJERASSI & W. KLYNE, J. Amer. chem. Soc. 79, 1506 (1957).
- [17] T. NORIN, Acta scand. chem. 17, 738 (1963); P. CRABBÉ, F. MCCAPRA, F. COMER & A. I. SCOTT, Tetrahedron 20, 2455 (1964); C. DJERASSI, W. KLYNE, T. NORIN, G. OHLOFF & E. KLEIN, *ibid.* 21, 163 (1965).
- [18] K. Schaffner & G. Snatzke, Helv. 48, 347 (1965).
- [19] H. E. ZIMMERMAN, R. G. LEWIS, J. J. MCCULLOUGH, A. PADWA, ST. W. STALEY & M. SEMMEL-HACK, J. Amer. chem. Soc. 88, 1965 (1966).
- [20] W.G. DAUBEN, G.W. SHAFFER & N.D. VIETMEYER, J. organ. Chemistry 33, 4060 (1968).
- [21] M. M. FAWZI & C. D. GUTSCHE, J. org. Chemistry 31, 1390 (1966).
- [22] H. DUTLER, C. GANTER, H. RYF, E. C. UTZINGER, K. WEINBERG, K. SCHAFFNER, D. ARIGONI & O. JEGER, Helv. 45, 2346 (1962).
- [23] P. J. KROPP & W. F. ERMAN, J. Amer. chem. Soc. 85, 2456 (1963).
- [24] H. N. A. AL-JALLO & E. S. WAIGHT, J. chem. Soc. (B) 1966, 73.
- [25] F. SONDHEIMER & D. ROSENTHAL, J. Amer. chem. Soc. 80, 3995 (1958).
- [26] A. BECKETT & G. PORTER, Trans. Farad. Soc. 59, 2051 (1963); J. N. PITTS, JR., H. W. JOHNSON, JR. & T. KUWANA, J. phys. Chemistry 66, 2456 (1962); J. K. S. WAN, R. N. MCCORMICK, E. J. BAUM & J. N. PITTS, JR., J. Amer. chem. Soc. 87, 4409 (1965); J. N. PITTS, JR., L. D. HESS, E. J. BAUM, E. A. SCHUCK, J. K. S. WAN, P. A. LEERMAKERS & G. VESLEY, J. Photochem. Photobiol. 4, 305 (1965).
- [27] O.KLING, E.NIKOLAISKI & H.L.SCHLÄFER, Ber. Bunsenges. physik. Chem. 67, 883 (1963); A. BECKETT & G. PORTER, Trans. Farad. Soc. 59, 2038 (1963).
- [28] P. J. WAGNER, J. Amer. chem. Soc. 89, 5715 (1967).
- [29] R.E. Kellog & W.T. Simpson, J. Amer. chem. Soc. 87, 4230 (1965).
- [30] G. N. LEWIS & M. KASHA, J. Amer. chem. Soc. 66, 2100 (1944).
- [31] G. S. HAMMOND, J. SALTIEL, A. A. LAMOLA, N. J. TURRO, J. S. BRADSHAW, D.O.COWAN, R.C. COUNSELL, V. VOGT & C. DALTON, J. Amer. chem. Soc. 86, 3197 (1964).
- [32] F. SWARTS, J. chim. phys. 28, 622 (1931).
- [33] O. JEGER & K. SCHAFFNER, Chem. Weekblad 60, 389 (1964).
- [34] B. NANN, H. WEHRLI, K. SCHAFFNER & O. JEGER, Helv. 48, 1680 (1965).
- [35] O. L. CHAPMAN, J. B. SIEJA & W. J. WELSTEAD, JR., J. Amer. chem. Soc. 88, 161 (1966).
- [36] H. E. ZIMMERMAN & J. W. WILSON, J. Amer. chem. Soc. 86, 4036 (1964).

- [37] R. B. WOODWARD & R. HOFFMANN, Angew. Chem. 81 (1969), im Druck.
- [38] R. HOFFMANN, Tetrahedron Letters 1965, 3819.
- [39] L.D.HESS, J.L. JACOBSON, K. SCHAFFNER & J.N. PITTS, JR., J. Amer. chem. Soc. 89, 3684 (1967).
- [40] L. D. HESS & J. N. PITTS, JR., J. Amer. chem. Soc. 89, 1973 (1967); C. H. ROBINSON, O. GNOJ & F. E. CARLON, Tetrahedron 21, 2509 (1965); W.G. DAUBEN & G. W. SHAFFER, Tetrahedron LETTERS 1967, 4415; H. E. ZIMMERMAN, R. D. RIEKE & J. R. SCHEFFER, J. Amer. chem. Soc. 89, 2033 (1967); H. E. ZIMMERMAN & R. L. MORSE, *ibid. 90*, 954 (1968).
- [41] R. BEUGELMANS, Bull. Soc. chim. France 1967, 244.
- [42] H.E.ZIMMERMAN, K.G.HANCOCK & G.C.LICKE, J. Amer. chem. Soc. 90, 4892 (1968).
- [43] J.T.PINHEY & K. SCHAFFNER, Austr. J. Chem. 21, 2265 (1968), und dortige Literaturreferenzen.
- [44] G. A. RUSSELL & J. LOKENSGARD, J. Amer. chem. Soc. 89, 5059 (1967).
- [45] E. J.COREY, J.D.BASS, R.LEMAHIEU & R.B.MITRA, J. Amer. chem. Soc. 86, 5570 (1964).
- [46] M. ITOH, M. TOKUDA, K. KIHARA & A. SUZUKI, Tetrahedron 24, 6591 (1968).
- [47] D.I. SCHUSTER & D.F. BRIZZOLARA, Chem. Comm. 1967, 1158.
- [48] J. L. RUHLEN & P. A. LEERMAKERS, J. Amer. chem. Soc. 89, 4944 (1967).
- [49] W. HERZ & M. G. NAIR, J. Amer. chem. Soc. 89, 5474 (1967).
- [50] S. K. MALHOTRA & H. J. RINGOLD, J. Amer. chem. Soc. 86, 1997 (1964).
- [51] T. N. HUCKERBY, N. A. J. ROGERS & A. SATTAR, Tetrahedron Letters 1967, 1113.
- [52] M.B. RUBIN & Z. NEUWIRTH-WEISS, Chem. Comm. 1968, 1607.
- [53] M.MOUSSERON, Pure appl. Chemistry 9, 481 (1964), und dortige Literaturreferenzen; N.C. YANG & M. J. JORGENSON, Tetrahedron Letters 1964, 1203; K. J.CROWLEY, R.A. SCHNEIDER & J.MEINWALD, J. chem. Soc. [C] 1966, 571; J.A.BARLTROP & J.WILLS, Tetrahedron Letters 1968, 4987; M. J. JORGENSON & L.GUNDEL, *ibid.* 4991.
- [54] H. NOZAKI, T. MORI & R. NOYORI, Tetrahedron 22, 1207 (1966).
- [55] S. KUWATA & K. SCHAFFNER, Helv. 52, 173 (1969).
- [56] H. WEHRLI, R. WENGER, K. SCHAFFNER & O. JEGER, Helv. 46, 678 (1963).
- [57] P. W. JENNINGS, Dissertation, University of Utah (1965); Y. YAMADA, H. UDA & K. NAKANI-SHI, Chem. Comm. 1966, 423; P.-F. CASALS, C. PLAISANCE & J. WIEMANN, Bull. Soc. chim. France 1968, 4599.
- [58] P. J. WAGNER & I. KOCHEVAR, J. Amer. chem. Soc. 90, 2232 (1968); D. I. SCHUSTER, A.C. FABIAN, N.P. KONG, W.C. BARRINGER, W.V. CURRAN & D.H. SUSSMAN, *ibid*. 5028.
- [59] M. HESKINS & J. E. GUILLET, ACS Polymer Preprints 9, 370 (1968).
- [60] W.G.HERKSTROETER, L.B. JONES & G.S. HAMMOND, J. Amer. chem. Soc. 88, 4777 (1966).
- [61] I. A. WILLIAMS & P. BLADON, Tetrahedron Letters 1964, 257; P. BLADON & I. A. WILLIAMS, J. chem. Soc. [C] 1967, 2032.
- [62] H. Köller, G. P. Rabold, K. Weiss & T. K. Mukherjee, Proc. chem. Soc. 1964, 332.
- [63] T. MATSUURA & K. OGURA, J. Amer. chem. Soc. 88, 2602 (1966); B. J. RAMEY & P. D. GARD-NER, *ibid.* 89, 3949 (1967).
- [64] M.PFAU, R.DULOU & M.VILKAS, C. rend. 1962, 1817; R.C.COOKSON, J.HUDEC & N.A. MIRZA, Chem. Comm. 1968, 180.
- [65] P. DE MAYO, J.-P. PETE & M. TCHIR, J. Amer. chem. Soc. 89, 5712 (1967); Canad. J. Chemistry 46, 2535 (1968).
- [66] O.L. CHAPMAN, P. J. NELSON, R. W. KING, D. J. TRECKER & A. A. GRISWOLD, Rec. chem. Progress 28, 167 (1967).
- [67] O. L. CHAPMAN, T. H. KOCH, F. KLEIN, P. J. NELSON & E. L. BROWN, J. Amer. chem. Soc. 90, 1657 (1968).
- [68] A. BUTENANDT & G. HANISCH, Ber. dtsch. chem. Ges. 69, 2773 (1936).
- [69] C. DJERASSI, G. ROSENKRANZ, J. ROMO, ST. KAUFMANN & J. PATAKI, J. Amer. chem. Soc. 72, 4534 (1950).
- [70] C. DJERASSI & S. BURSTEIN, Tetrahedron 7, 37 (1959).
- [71] E.C. DU FEU, F. J. McQuillin & R. Robinson, J. chem. Soc. 1937, 53.
- [72] R. B. WOODWARD & T. SINGH, J. Amer. chem. Soc. 72, 494 (1950).